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Abstract	
We	analyse	the	sources	of	economies	and	diseconomies	of	scale	in	On-Demand	Ridepooling	(ODRP),	
disentangling	three	effects:	when	demand	grows,	average	costs	are	reduced	due	to	i)	a	larger	fleet	
that	diminishes	waiting	and	walking	times	(Mohring	Effect),	and	ii)	matching	users	with	more	similar	
routes	(Better-matching	Effect).	A	counter-balance	force	(Extra-detour	Effect),	occurs	when	iii)	the	
number	of	passengers	per	vehicle		increases	and	users	face	longer	detours.	At	low	demand	levels,	
there	is	little	sharing	and	the	Mohring	effect	prevails;	as	demand	grows,	more	passengers	per	vehicle	
push	for	the	Extra-detour	Effect	 to	dominate;	eventually,	vehicles	run	at	capacity,	and	the	Better-
matching	Effect	prevails.	The	 last	 two	effects	are	specific	 to	ODRP	as	 the	routes	are	not	 fixed	but	
adapted	 online.	 Our	 simulations	 show	 that	 considering	 both	 users’	 and	 operators’	 costs,	 scale	
economies	prevail,	 and	 that	ODRP	with	human-driven	vehicles	and	walks	allowed	has	 total	 costs	
similar	to	door-to-door	systems	with	driverless	vehicles.	

	
Keywords:		On-demand	mobility,	Ridepooling,	Scale	economies,	Mohring	effect,	Extra-detour	effect,	
Better-matching	effect,	Automated	vehicles	

1. Introduction	

1.1	On-demand	ridepooling	systems:	Potential	and	challenges	
Transport	systems	are	facing	profound	transformations	worldwide	thanks	to	the	ability	to	connect	
vehicles	 and	 large	 numbers	 of	 passengers	 on	 demand.	 After	 almost	 ten	 years	 since	 their	 arrival,	
several	studies	have	shown	that	transportation	network	companies	(TNCs)	based	on	un-shared	rides	
(also	 called	 ride-hailing	 or	 ridesourcing)	have	 increased	 traffic	 and	 congestion	 (Diao	 et	al.,	 2021,	
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Henao	&	Marshall,	2019,	Roy	et	al.,	2020,	Tirachini	&	Gomez-Lobo,	2020,	Ward	et	al.,	2021,	Wu	&	
MacKenzie,	 2021).	 This	 situation	 has	 fostered	 the	 study	 and	 implementation	 of	 on-demand	
ridepooling	 (ODRP)	 services,	 in	which	 different	 users	 simultaneously	 share	 a	 vehicle	when	 their	
routes	are	compatible,	so	that	congestion	and	emissions	might	be	reduced	(Li	et	al.,	2021,	Tikoudis	
et	al.,	2021),	depending	on	modal	substitution.		
	
ODRP	systems	have	the	potential	to	lower	congestion	because	they	might	reduce	the	required	fleet	
significantly	 when	 compared	 to	 the	 non-pooled	 versions,	 as	 shown	 by	 several	 previous	 studies	
(Alonso-Mora	et	al.,	2017,	Fagnant	&	Kockelman,	2018,	Santi	et	al.,	2014).	However,	these	analyses	
are	based	on	comparing	the	number	of	vehicles	needed	to	serve	a	fixed	demand	level,	which	might	
be	a	strong	assumption	as	both	types	of	service	do	not	necessarily	attract	the	same	number	of	users.	
In	 fact,	 recent	studies	suggest	 that	 the	ability	of	ODRP	to	reduce	congestion	depends	on	reaching	
some	advantageous	scenarios	(Ke	et	al.,	2020,	Tirachini	et	al.,	2020).	Such	scenarios	should	combine	
an	efficient	fleet	operation	with	an	ability	to	attract	a	significant	number	of	passengers	from	private	
cars.	To	reach	those	scenarios,	some	strategic	decisions	arise,	such	as	whether	it	is	efficient	to	use	
ODRP		in	low-demand	or	high-demand	markets,	or	if	it	should	replace	and/or	complement	a	public	
transport	service	over	a	network.		
	
These	strategic	questions	require	a	deeper	understanding	of	the	user	and	operator	cost	structure	of	
ODRP	systems,	in	particular,	of	the	mechanisms	that	introduce	economies	or	diseconomies	of	scale.	
However,	this	is	not	an	easy	task,	as	the	operation	of	ODRP	depends	on	specific	algorithms	to	face	the	
complexity	of	operating	on	demand	and	with	a	large	number	of	feasible	ways	to	match	users	and	
vehicles.	Which	algorithm	to	utilise	may	yield	different	strategic	results	and	affect	scale	effects.	For	
instance,	 a	 seminal	 study	 by	 Li	&	Quadrifoglio	 (2010)	 studies	 a	 last-mile	 service	 that	 dispatches	
vehicles	sequentially	as	soon	as	they	get	enough	users	regardless	of	their	destinations.	When	doing	
so,	a	potential	 source	of	scale	economies	 is	not	 leveraged,	namely	 that	a	greater	demand	enables	
grouping	together	users	with	closer	destinations	without	increasing	waiting	times	significantly.	This	
is	the	type	of	issue	that	we	address	in	this	paper.	

1.2	Overview,	contributions,	and	structure	of	the	paper	
In	this	paper,	we	extend	a	state-of-the-art	assignment	model	to	perform	a	detailed	economic	analysis	
of	ODRP	systems.	In	particular,	we	uncover	three	sources	of	economies	and	diseconomies	of	scale	
that	are	present	simultaneously	when	operating	ODRP,	with	the	objective	to	determine		the	efficiency	
of	ODRP	as	a	shared-mobility	platform	for	urban	operations.		
	
To	do	so,	we	consider	a	real-life	network	in	Manhattan,	New	York,	and	also	an	extended	version	of	
the	 so-called	 single-line	 model	 (borrowed	 from	 public	 transport),	 in	 order	 to	 study	 sources	 of	
economies	and	diseconomies	of	scale	when	operating	ODRP.	The	traditional	single-line	model	has	
been	extensively	used	by	researchers	across	decades	to	analyse	structural	aspects	of	mass	public	
transport	 design.	 The	model	 is	 useful	 to	 study	 the	 impact	 of	 the	 demand	 levels,	 values	 of	 time,	
operator	costs	and	other	parameters	over	the	mobility	system	under	scrutiny,	simplifying	its	spatial	
distribution.	By	this	means,	the	demand	can	be	represented	by	a	single	variable	(or	a	few	variables),	
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usually	 in	 passengers	 per	 hour,	 which	 makes	 this	 model	 quite	 precise	 for	 scale	 analysis	 (e.g.,	
Fielbaum	et	al.,	2020a,	Tirachini	&	Antoniou,	2020).	
	
The	single-line	model	 is	useful	 for	scale	analysis,	but	has	a	relevant	 limitation	when	studying	on-
demand	systems:	the	on-demand	nature	entails	that	vehicles’	routes	should	not	be	defined	a	priori	
but	adapted	to	the	emerging	users.	Such	a	feature	cannot	be	captured	in	a	single-line	model	in	which	
there	is	only	one	possible	route.	This	limitation	might	influence	scale	analysis,	as	one	aspect	to	study	
is	 the	 evolution	 of	 the	 routes	with	 scale	 (in	 fact,	 Manik	 &	Molkenthin,	 2020,	 show	 that	 a	 linear	
network	 artificially	 favours	 the	 performance	 of	 ODRP	 over	 several	 alternative	 topologies).	 We	
address	 this	 limitation	by	 including	 simulations	using	 a	 real-life	 dataset	 from	Manhattan,	 and	by	
extending	 the	single-line	model,	 so	 that	we	keep	most	of	 its	 simplifying	aspects,	but	yet	enabling	
different	 routes	 to	 be	 followed	 depending	 on	 the	 passengers.	 In	 simple	 terms,	we	 deploy	 a	 grid	
surrounding	the	single-line,	so	that	the	vehicles	move	within	the	grid	depending	on	the	specific	users	
they	are	serving.	
	
In	our	setting,	we	have	another	challenge	that	arises	when	analysing	scale	for	on-demand	systems:	
which	fleet	to	use.	Most	models	that	simulate	ODRP	assume	a	given	fleet	(as	we	describe	further	in	
Section	2.1).	However,	a	proper	scale	analysis	 requires	 that	 the	 fleet	 is	endogenously	 	 computed,	
which	is	troublesome	in	ODRP	as	even	with	a	fixed	fleet	the	mathematical	problems	present	great	
complexity.	Here	we	propose	a	method	to	compute	the	fleet	together	with	the	assignment	decisions,	
so	that	the	number	of	vehicles	responds	to	the	demand.			
	
We	are	interested	in	the	potential	of	ODRP	to	face	some	of	 	the	most	relevant	challenges	faced	by	
urban	transport,	such	as	emissions	and	congestion	externalities,	so	the	system	we	study	follows	rules	
that	 resemble	public	 transport	 operations.	 It	 is	 non-profit,	 and	 the	 costs	 of	 all	 agents	 (users	 and	
operators)	are	considered	when	deciding	how	to	assign	vehicles	to	users.	The	number	of	vehicles	and	
their	routes	are	decided	by	a	central	controller	aiming	to	minimise	a	function	that	represents	total	
costs,	where	we	impose	that	all	users	must	be	served.	Moreover,	we	do	not	impose	a	door-to-door	
service,	 i.e.,	 the	system	might	decide	 (on-demand)	pick-up	and	drop-off	points	 that	 require	some	
short	walks,	if	doing	so	improves	the	system’s	overall	performance.	That	walking	time	has	a	valuation	
for	the	user	that	is	different	from	the	valuation	of	in-vehicle	time.	
	
Our	main	contribution	is	to	theoretically	disentangle	and	discuss	in	depth	three	sources	of	economies	
and	diseconomies	of	scale	in	ODRP	systems,	which	are	then	verified	through	numerical	simulations	
under	several	different	scenarios.	These	scale	effects	illustrate	the	potential	and	obstacles	that	need	
to	be	overcome	for	ODRP	to	succeed	(for	instance,	Bahrami	et	al.	2022	show	that	the	profitability	of	
ODRP	depends	on	the	presence	of	scale	economies	when	matching	different	users).	Some	of	these	
sources	of	economies	and	diseconomies	of	scale	are	specific	to	ODRP	systems,	as	they	depend	on	how	
the	 flexible	 routes	 followed	 by	 the	 vehicles	 evolve	 when	 the	 number	 of	 passengers	 grows.	
Furthermore,	we	propose	a	way	 to	compute	 the	 fleet	 size	 in	ODRP	 together	with	 the	assignment	
decisions,	which	can	be	utilised	for	other	types	of	analysis	beyond	the	objectives	of	this	paper.	We	
also	show	the	potential	of	relaxing	the	door-to-door	scheme	when	all	requests	must	be	served,	and	
compare	our	results	with	an	idealised	public	transport	system.	
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As	discussed	exhaustively	 in	Section	3,	 there	are	studies	 that	 identify	some	of	 the	scale	effects	of	
ODRP	analysed	in	the	present	research	(Daganzo	et	al.,	2020,	Kaddoura	&	Schlenther,	2021,	Ke	et	al.,	
2020,	Lehe	et	al.,	2021,	Militão	&	Tirachini,	2021,	Zhang	&	Nie,	2021),	although	most	of	these	works	
focus	on	a	single	effect.	Compared	to	this	body	of	research,	our	first	contribution	is	the	setting	of	a	
single	 framework	 that	 allows	 us	 to	 identify	 and	 combine	 the	 three	 sources	 of	 economies	 and	
diseconomies	of	 scale	previously	mentioned,	 in	 an	 integrated	 fashion	 that	 reveals	which	of	 them	
dominates	 as	 the	demand	grows.	 Second,	 in	 our	model	 the	 fleet	 is	 endogenously	 adjusted	 to	 the	
increasing	demand	levels,	which	can	be	compared	to	previous	research	efforts	that	usually	assumed	
a	 fleet	 size	 exogenously	 given.	 Third,	 in	 the	 application	 of	 the	 model,	 we	 compare	 alternative	
deployment	scenarios	 in	order	 to	address	 important	policy	and	service	design	questions,	 such	as	
what	 the	efficiency	gains	of	allowing	walks	 to	pick-up	and	 from	drop-off	points	are,	compared	 to	
door-to-door	operation	systems	(for	both	human-driven	and	driverless	vehicles),	and	what	are	the	
implications	of	alternative	operation	rules	 in	 the	cost	comparison	between	ODRP	and	 fixed-route	
public	transport.		
	
The	paper	is	organised	as	follows.	Section	2	revises	relevant	previous	studies.	Section	3	describes	
qualitatively	 and	 formalises	 which	 are	 the	 most	 relevant	 novel	 sources	 of	 scale	 economies	 and	
diseconomies	that	emerge	for	a	transport	system	that	is	both	on-demand	and	shared.	Section	4	shows	
the	numerical	simulations,	for	which	we	first	explain	the	methodological	challenges	and	how	we	face	
them.	Finally,	Section	5	concludes	and	proposes	some	directions	for	future	research.	

2. Related	works	

2.1	Fleet	sizing	in	on-demand	ridepooling	systems	
Deciding	the	fleet	size	to	be	used	in	an	ODRP	system	is	not	an	easy	task.	Contrary	to	public	transport,	
the	routes	cannot	be	known	in	advance,	so	the	usual	techniques	dealing	with	cycle	times	and	desired	
frequencies	(see	Jara-Díaz	&	Gschwender,	2003	for	a	survey	on	this	topic)	cannot	be	applied	here.	
Furthermore,	the	ideas	that	have	been	used	for	non-shared	on-demand	systems,	where	the	crucial	
question	is	how	to	chain	consecutive	trips	(such	as	Vazifeh	et	al,	2018),	are	also	not	applicable	in	this	
context,	 because	 here	 the	 trips	 of	 different	 users	 overlap.	 Such	 difficulties	 have	 been	 faced	with	
different	approaches	that	we	now	describe.	
	
The	most	usual	approach	in	the	operations	research	literature	is	to	work	with	fleets	of	fixed	size.	In	
order	to	determine	which	fleet	size	is	optimal,	or	at	least	gain	some	intuition	about	this	issue,	it	is	
common	to	repeat	the	same	numerical	experiments	with	different	fleet	sizes,	to	analyse	which	size	
adjusts	more	efficiently	to	a	given	demand	level,	by	comparing	some	metrics	on,	e.g.,	operating	costs,	
share	of	unserved	demand,	waiting	time	and	travel	time	(Alonso-Mora	et	al.,	2017,	Levin	et	al.,	2017,	
Lokhandwala	&	Cai,	2018,	Wang	et	al.,	2018).	Other	studies	seek	the	minimal	fleet	able	to	meet	some	
exogenous	conditions	on	the	quality	of	service.	For	instance,	Daganzo	&	Ouyang	(2019)	and	Martinez	
&	Viegas	 (2017)	 require	 to	 serve	all	 the	demand,	 although	 the	 latter	 also	 compare	 to	 the	 results	
obtained	 with	 larger	 fleets.	 Spieser	 et	al.	 (2014)	 consider	 bounds	 on	 the	 number	 of	 passengers	
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waiting	 to	be	served,	and	Fagnant	&	Kockelman	(2018)	aim	at	 fulfilling	some	predefined	waiting	
times.	
	
Alternative	rules	to	analyse	fleet	size	in	ODRP	include	the	proposals	of		Santos	&	Xavier	(2015),	who	
assume	that	the	number	of	vehicles	has	to	be	proportional	to	the	number	of	requests,	a	rule	that	is	
obtained	 as	 a	 result	 by	 Kang	 &	 Levin	 (2021)	when	 following	 an	 assignment	 policy	 that	 aims	 at	
maximising	the	number	of	users	per	vehicle;	Pinto	et	al.	(2020),	who	consider	an	available	budget,	
shared	with	public	transport,	that	has	to	be	respected;	and	Fielbaum	(2020),	who	makes	a	weighted	
optimization	between	users’	 and	operators’	 costs	under	 simplifying	assumptions	 that	 lead	 to	 the	
prediction	of	 exact	 fleet	 sizes.	 Cap	&	Alonso-Mora	 (2018)	 explain	 that	 the	 optimal	 fleet	 size	 also	
considers	 both	 types	 of	 costs	 and	 study	 the	 corresponding	multi-objective	 problem,	 proposing	 a	
method	to	compute	the	Pareto	front.	

2.2	The	single-line	model	and	other	simplified	networks	for	the	analysis	of	
transport	systems	
The	single	line	model	has	been	used	to	identify	scale	effects	in	public	transport.	The	stream	of	studies	
based	on	the	single-line	model	was	pioneered	by	Mohring	(1972),	who	identified	one	of	the	main	
sources	 of	 scale	 economies	 in	 public	 transport	 (now	 known	 as	 the	 “Mohring	 Effect”):	 more	
passengers	require	more	buses,	which	increases	the	service	frequency	and	diminishes	waiting	times	
for	everybody.	His	model	was	later	extended	by	Jansson	(1980)	to	consider	optimal	bus	capacities	
and	time	at	stops,	where	a	source	of	diseconomies	of	scale	emerges,	namely	that	an	increase	in	the	
number	of	users	yields	the	utilisation	of	larger	buses,	making	users	to	spend	more	time	waiting	for	
other	passengers	to	board	and	alight	(an	effect	that	can	be	compensated	by	changing	the	number	of	
doors	per	vehicle,	as	analysed	by	Jara-Díaz	and	Tirachini	2013).		Evans	&	Morrison	(1997)	discovered	
yet	another	source	of	scale	economies	with	an	extension	of	this	model:	an	increase	in	the	number	of	
users	 enables	 spending	 more	 resources	 in	 preventing	 accidents	 and	 disruptions	 in	 the	 service.	
Finally,	the	inclusion	of	a	crowding	externality	as	increasing	the	value	of	in-vehicle	time	savings	for	
public	 transport	 users	 has	 been	 shown	 to	 increase	 average	 costs	 (and	 therefore	 introduce	
diseconomies	 of	 scale)	 for	 large	 demand	 levels	 in	 a	 single-route	model	 (Tirachini	 et	al.,	 2010a),	
however,	when	the	number	of	routes	can	be	optimally	decided	to	minimise	total	costs,	route	density	
is	increased	to	reduce	crowding	and	keep	total	costs	down	even	for	large	demand	levels	(Tirachini	
et	al.,	2010b).	Most	of	these	effects	have	been	shown	to	remain	valid	for	single	lines	when	a	network	
is	considered	(Fielbaum	et	al.,	2020a).	
	
Similar	analyses	have	also	been	conducted	in	other	networks,	although	finding	a	suitable	simplified	
representation	is	already	a	complex	task	(see	Fielbaum	et	al.,	2017,	for	an	exhaustive	discussion	on	
this	issue).	In	the	context	of	ODRP,		Pimenta	et	al.	(2017)	has	utilised	a	single-line	model	to	discuss	
how	to	operate	the	system	in	a	reliable	way;	Badia	&	Jenelius	(2021)	and	Chen	&	Nie	(2017)	consider	
simplified	grids	to	study	how	to	connect	ODRP	with	mass	public	transport,	a	problem	that	is	studied	
over	 an	 homogeneous	 circle	 by	 Fielbaum	 (2020);	 while	 Manik	 &	 Molkenthin	 (2020)	 compare	
different	simplified	topologies	to	analyse	which	of	them	are	better	served	through	ODRP.	
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2.3		Comparing	ridepooling	and	public	transport	
Previous	studies	have	compared	whether	it	is	more	efficient	to	utilise	ODRP	instead	of	fixed-route	
public	transport	services	in	a	given	area;	the	usual	result	is	that	ODRP	is	more	convenient	only	for	
low-demand	services.	,	as	well	as	Papanikolaou	&	Basbas	(2020),	have	rested	on	specific	functional	
forms	that	approximate	the	operation	of	ODRP	systems,	finding	that	ODRP	should	be	preferred	not	
only	when	the	demand	is	 low	but	also	when	the	areas	to	be	served	are	small	and	trips	are	short.	
Quadrifoglio	&	Li	(2009)	and	Li	&	Quadrifoglio	(2010)	use	continuous	approximation	models	and	
identify	 the	 discomfort	 of	walking	 as	 another	 relevant	 parameter	 that	 determines	which	 type	 of	
system	should	be	preferred.	Similarly,	Calabrò	et	al.	(2021)	use	microsimulation	to	find	that	flexible	
services	are	better	in	rural	areas.	On	the	contrary,	Bischoff	et	al.	(2019)	suggest	that	public	transport	
could	be	fully	replaced	by	ODRP	in	small	or	medium	cities,	while	Viergutz	&	Schmidt	(2019)	conclude	
that	rural	areas	should	use	line-based	on-demand	services	rather	than	completely	flexible	routes.	
	
It	should	be	noted	that	all	these	models	assume	that	the	flexible	systems	provide	door-to-door	service	
(or	station-to-door,	when	it	is	solving	the	last-mile	problem),	which	is	a	common	assumption	as	most	
real-life	on-demand	systems	operate	in	that	way.	However,	operating	door-to-door	is	not	mandatory	
for	 this	 type	of	 system.	Actually,	 previous	 research	has	 consistently	 shown	 that	 requesting	 some	
users	to	walk	either	to	personalised	pick-up	and	drop-off	points	(Fielbaum,	2021,	Fielbaum	et	al.,	
2021,	Lotze	et	al.,	2022,	Wang	et	al.,	2022)	or	to	group	meeting	points	(Bischoff	et	al.,	2019,	Li	et	al.,	
2016,	 Li	 et	al.,	 2018,	 Stiglic	 et	al.,	 2015)	 can	 enhance	ODRP	 services	 significantly.	 Such	 ideas	 are	
already	 applied	 in	 real	 life:	 for	 instance	 the	 shared-mobility	 platform	 Jetty	 in	 Mexico	 City	 asks	
passengers	to	be	at	specific	pick-up	points	to	be	able	to	board	a	shared	car	or	van;	and	users	can	
monitor	the	location	of	the	vehicle	in	real-time	before	boarding	(Tirachini	et	al.,	2020).			

3. Sources	of	scale	economies	in	ODRP	
3.1	Definition	of	an	ODRP	cost	function	
	
The	problem	of	operating	an	ODRP	system	is	defined	by	an	urban	environment	(usually	a	network	
represented	by	a	directed	graph),	a	fleet	of	vehicles	𝑉,	and	a	demand	consisting	of	a	set	of	requests	
𝑟	 ∈ 𝑅.	Each	request	is	characterised	by	its	origin,	destination	and	the	time	in	which	the	request	was	
placed.	Crucially,	the	demand	is	not	known	beforehand;	instead,	the	system	can	only	take	a	request	
into	account	when	it	emerges,	i.e.,	the	time	in	which	the	request	was	placed.	A	solution	to	this	problem	
is	defined	by	a	route	𝛱!	for	each	vehicle	𝑣,	that	serves	a	set	of	requests	𝑅! ,	in	such	a	way	that	the	
capacity	 of	 the	 vehicle	 is	 never	 exceeded,	 and	 without	 violating	 other	 constraints	 that	 could	 be	
defined	by	the	operator	or	service	manager	(such	as	hard	restrictions	on	total	waiting	and	travel	
times).	
	
This	general	problem	can	be	formulated	in	many	different	ways.	In	computational	complexity	theory,	
the	 ODRP	 problem	 combines	 two	 well-known	 NP-Hard	 problems,	 namely	 Dynamical-Vehicle-
Routing-Problem	and	Dial-A-Ride		(Yu	&	Shen,	2020).	Therefore,	in	the	past	years,	several	methods	
and	heuristics	have	been	proposed	to	operate	ODRP	systems	and	determine	how	to	decide	routes	
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and	assign	trip	requests	to	vehicles.		When	solving	the	problem,	researchers	usually	follow	a	batch-
based	 approach,	 in	which	 emerging	 requests	 are	 accumulated	 during	 some	 lapse	 of	 time	 before	
deciding	how	to	assign	them	all	together	(e.g.,	Alonso-Mora	et	al.,	2017,	Simonetto	et	al.,	2019,	Tsao	
et	al.,	 2019),	 or	 an	 event-based	 approach	 ,	where	 each	 request	 is	 assigned	 as	 soon	 as	 it	 appears	
(Fagnant	&	Kockelman,	2018,	Militão	&	Tirachini,	2021,	van	Engelen	et	al.,	2018).	When	deciding	
routes	and	assignments,	 all	 of	 these	 techniques	 consider	 some	objective	 function,	 i.e.,	 there	 is	 an	
implicit	or	explicit	cost	function	that	the	model	tries	to	minimise.	
	
What	is	the	economic	meaning	of	the	cost	function	in	the	transport	context?	As	discussed	by	Jara-
Díaz	(2007),	the	product	in	transport	systems	is	defined	by	the	demand	being	transported,	and	the	
problem	 is	 how	 to	 serve	 it	 optimally,	 i.e.,	 how	 to	 define	 the	 fleet	 composition,	 routes,	 and	
assignments,	 to	minimise	 a	 certain	 cost	 function.	Which	 elements	 should	be	 accounted	 for	when	
defining	 the	ODRP	cost	 function?	First,	we	should	note	 that	 the	standard	production	approach	 to	
scale	economies	that	is	found	in	other	markets	(i.e.,	how	do	average	production	costs	evolve	when	
exogenous	output	increases)	is	incomplete	to	analyse	passenger	transport	systems	as	ODRP.	In	the	
public	transport	literature,	such	realisation	came	in	the	70s,	with	the	pioneering	works	of	Mohring	
(1972),	Turvey	&	Mohring	(1975),	and	Jansson	(1979),	who	were	among	the	first	to	argue	that	all	
users’	time	costs	and	efforts	should	be	treated	as	costs	on	a	par	with	operators’	costs,	when	analysing	
the	optimal	design	and	pricing	of	public	transport	systems,	because	considering	operators’	costs	only	
leads	to	suboptimal	fleets	(e.g.,	too	few	vehicles	that	increase	waiting	time,	too	small	vehicles	that	
increase	passengers’	crowding).	The	relevance	of	including	both	users’	costs	and	operators’	costs	in	
the	 analysis	 of	 public	 transport	 provision	 has	 been	 subsequently	 exposed	 by	many	 studies	 (see	
reviews	by	Jara-Diaz	and	Gschwender,	2003;	Hörcher	and	Tirachini,	2021).	In	what	follows,	we	adopt	
this	 paradigm	 of	 total	 cost	 functions	 -	 including	 users	 and	 operators-	 for	 the	 analysis	 of	 ODRP	
systems.	
	
Operator	costs	are	defined	by	capital	and	operating	costs	(Delle	Site	&	Filippi,	1998,	Jara-Díaz	et	al.,	
2017),	which	depend	namely	on	 the	 fleet	 composition	 (number	of	 vehicles	𝐵[veh]	 and	 their	 size	
𝐾[pax/veh]),	and	their	usage	(defined	by	the	vehicles-hour-travelled	VHT	or	the	vehicles-kilometres-
travelled	VKT),	respectively.	User	costs	are	more	difficult	 to	define,	as	they	aim	to	capture	all	 the	
subjective	aspects	of	users’	experience.	User	costs	should	at	least	consider	the	average	times	involved	
in	the	different	stages	of	the	transport	process:	waiting	time	𝑡"	[min],	walking	time	𝑡#[min],	and	in-
vehicle	time	𝑡![min].	Other	aspects	that	can	be	included,	but	are	disregarded	in	this	paper,	are	the	
unreliability	 of	 the	 system,	 how	 comfortable	 it	 is,	 or	 the	 eventual	 (and	 undesirable)	 presence	 of	
transfers1.	Putting	everything	together,	the	cost	function	can	be	written	as:	
	
𝑐𝑜𝑠𝑡 = 𝑐$(𝐵, 𝐾) + 𝑐%(𝑡" , 𝑡# , 𝑡!)	 	 	 	 	 	 	 	 (1)	
	
Where		𝑐$and	𝑐%	stand	for	operators’	and	users’	costs,	respectively.	A	usual	approach	(similar	to	what	
we	do	when	running	simulations	in	Section	4)	is	to	assume	these	functions	as	𝑐$ = (𝑐$1 + 𝑐$2𝐾)𝐵	
and	𝑐% = 𝑝"𝑡" + 𝑝#𝑡# + 𝑝!𝑡! ,	where	𝑐$1, 𝑐$2	are	operator	cost	parameters	that	translate	everything	

 
1	 For	 the	 case	 of	 public	 transport,	 van	Lierop	 et	al.	 (2018)	provide	 a	 review	on	 the	 factors	 considered	by	users	when	
evaluating	their	experience.	
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into	the	same	monetary	currency,	and		𝑝" , 𝑝#	and	𝑝!	are	the	value	of	waiting,	access	and	in-vehicle	
time,	 respectively.	 The	 resulting	 users	 and	 operators	 costs	 are	 not	 exogenous,	 as	 they	 are	
endogenously	 obtained	when	minimising	 the	 cost	 function	 given	 by	 Eq.	 (1).	 For	 instance,	 when	
deciding	which	vehicle	to	assign	to	a	particular	request,	operating	costs	as	well	as	waiting	and	in-
vehicle	 time	 costs	 need	 to	 be	 considered.	 Investigating	 scale	 economies	 in	 these	 systems	 refers	
precisely	to	all	the	sources	of	costs	in	Eq.	(1).	Overall	scale	economies	means	that	the	average	total	
costs	decrease	as	the	number	of	users	 increases,	and	this	analysis	can	be	disentangled	to	analyse	
what	happens	with	each	component	of	the	cost	function	when	the	demand	grows.	
	
As	 discussed	 by	 Basso	&	 Jara-Díaz	 (2006),	 scale	 analysis	 in	 transport	 systems	 is	 a	 complex	 task	
because	the	demand	has	a	spatial	dimension	that	cannot	be	aggregated	through	simplified	indices	
such	as	Passenger-Kilometres.	Our	analysis	should	be	interpreted	as	a	ray	analysis	(Baumol,	1986),	
i.e.,	the	demand	grows	proportionally	keeping	the	spatial	distribution	constant.	This	implies	that	the	
demand	(i.e.,	the	product)	can	be	described	by	a	single	variable	𝑌	[pax/hour].	When	we	run	numerical	
simulations	(Section	4),	such	a	ray	analysis	is	achieved	first	through	the	utilisation	of	(an	expanded	
version	of)	the	single-line	model,	and	then	via	selecting	an	increasing	number	of	random	requests	
from	a	real-life	dataset	in	Manhattan.	It	 is	worth	noting	that	when	demand	grows,	its	distribution	
might	actually	change,	so	that	the	scale	analysis	done	here	should	be	complemented	with	the	analysis	
of	economies	of	 scope	 (Jara-Diaz,	2007).	Moreover,	 the	on-demand	nature	of	ODRP	 increases	 the	
difficulty	of	the	study	of	scale	economies,	as	the	traditional	techniques	presume	that	the	decisions	
(here	the	fleet	size	and	their	routes)	are	taken	optimally,	but	doing	so	might	be	unfeasible	when	the	
demand	is	not	known	beforehand,	which	is	why	we	rely	on	a	thorough	set	of	simulations	in	Section	
4	to	verify	and	compare	the	different	scale	effects	introduced	later	in	this	section.	
	
We	now	propose	and	explain	 three	 sources	of	 scale	economies	dealing	with	users,	which	will	be	
studied	numerically	in	Section	4.	Let	us	denote	by	𝑌	the	number	of	users	per	hour	in	the	system	,	and	
by	𝜌	[pax/veh]	the	average	load	-or	occupancy	rate-	of	the	vehicles	(note	that,	by	definition,	it	must	
hold	that	𝜌 ≤ 𝐾),		which	refers	to	the	average	number	of	passengers	on	board	of	a	vehicle.		As	the	
number	of	vehicles	and	their	operation	is	decided	optimally2,	the	variables	𝐵	and	𝜌	should	respond	
endogenously	to	the	demand,	i.e.,	𝐵 = 𝐵(𝑌), 𝜌 = 𝜌(𝑌).	The	fleet	size	and	the	occupancy	of	vehicles	
critically	influence	users’	experience	and	satisfaction,	meaning	that	𝑡&(𝑌) =		𝑡&(𝐵(𝑌), 𝜌(𝑌), 𝑌)	for	ℎ =
𝑤, 𝑎, 𝑣.	We	now	study	the	effect	of	each	of	these	variables	on	waiting,	access,	and	in-vehicle	times.	

3.2	The	Extra-detour	effect	
When	 more	 users	 enter	 an	 ODRP	 system,	 it	 becomes	 usually	 possible	 to	 serve	 more	 of	 them	
simultaneously	with	 the	same	vehicle,	even	 if	 there	are	restrictions	on	 the	 total	waiting	or	 travel	
times3.	Pooling	users	in	shared	rides	is	often	optimal,	as	fewer	vehicles	are	required	compared	to	an	
alternative	with	less	sharing.		Formally	speaking,	this	means	that	𝜌′(𝑌) > 0.	The	Extra-detour	effect	

 
2	Or	following	some	heuristic	aiming	for	optimal	decisions.	We	note	that	for	this	analysis,	we	assume	K	to	be	exogenous,	
and	we	show	in	Section	4	that	the	analysis	remains	valid	if	K	was	also	optimised. 
3	This	can	be	formalised	through	the	so-called	shareability	networks,	that	measure	how	many	requests	can	be	combined	
together.	 As	 shown	 by	 Santi	 et	al.	 (2014),	 and	 Tachet	 et	al.	 (2017),	 a	 greater	 number	 of	 travellers	 entails	 a	 larger	
shareability. 
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is	a	source	of	scale	diseconomies	for	users,	defined	as	the	degradation	in	the	quality	of	service	
due	 the	 extra	 detours	 induced	 by	 the	 increase	 in	 the	 average	 number	 of	 passengers	 per	
vehicle.	Intuitively,	as	the	vehicle	routes	are	not	defined	a	priori	but	adapted	to	the	specific	users	
being	served,	 the	quality	of	 service	perceived	by	 the	users	 is	 sensitive	 to	 route	choice.	When	 the	
vehicles	are	more	shared,	 this	 increases	 the	detours	 required	by	 the	system	(Militão	&	Tirachini,	
2021a),	which	in	turn	increases	waiting	times.	Moreover,	the	chance	of	walking	instead	of	having	a	
door-to-door	service	increases	as	well,	because	the	time	savings	from	walking	are	larger	when	more	
other	passengers	are	affected.	The	Extra-detour	effect	can	be	expressed	mathematically	as4:	
	
'(!
')
		for	ℎ = 𝑤, 𝑎, 𝑣	 	 	 	 	 	 	 	 	 	 (2)	

	
The	Extra-detour	effect	is	illustrated	in	Figure	1,	where	we	show	how	the	blue	passenger	increases	
all	the	components	of	her	travel	time	when	the	vehicle	serves	a	new	user	(red).	The	Extra-detour	
effect	can	get	exhausted	when	vehicles	run	at	capacity	(or	near	capacity).		
	

	
Figure	1.	Example	of	the	Extra-detour	effect.	The	number	of	passengers	is	low	in	the	top	row,	so	users	do	not	
share	the	vehicle,	and	the	blue	passenger	faces	little	waiting	time	and	no	detour.	When	the	demand	grows	
(bottom	row),	a	new	red	co-traveller	appears	close	to	her,	which	increases	her	waiting	time,	requires	her	to	

walk	(marked	with	a	dotted	arrow),	and	implies	a	detour,	degrading	her	perceived	quality	of	service.	
	
As	discussed	by	Fielbaum	&	Alonso-Mora	(2020),	the	fact	that	routes	are	not	known	beforehand,	but	
depend	on	the	travellers,	is	specific	to	mobility	providers	that	are	both	shared	(otherwise	vehicles	
follow	 shortest	 paths)	 and	 on-demand	 (otherwise	 vehicles	 follow	 fixed	 routes).	 Therefore,	 this	
source	of	scale	diseconomies	is	specific	to	ODRP	systems.	Nevertheless,	the	Extra-detour	effect	can	
be	interpreted	as	similar	to	a	well-known	fact	in	public	transport,	namely	that	new	users	increase	the	
vehicle	occupancy	 rate,	which	 in	 turn	 increases	 the	 time	spent	at	 stops	waiting	 for	boarding	and	
alighting	passengers.	
	
It	is	noteworthy	that	the	Extra-detour	effect	can	affect	other	service	attributes,	besides	𝑡" , 𝑡#	and	𝑡!:	

 
4	Note	that	there	might	be	specific	circumstances	in	which	a	vehicle’s	load	can	increase	without	increasing	service	times	
(for	instance,	starting	from	any	base	situation,	and	duplicating	the	number	of	users	for	all	those	requests	that	have	low	
waiting	times).	Eqs.	(2)-(4)	are	valid	when	the	demand	grows	without	changing	the	spatial	distribution.	For	a	thorough	
discussion	about	the	methodological	challenges	of	studying	scale	economies	in	transport	systems	when	the	network	and/or	
spatial	distribution	of	the	demand	can	be	changed,	see	Basso	&	Jara-Díaz	(2006).	
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● Fielbaum	&	Alonso-Mora	(2020)	identify	two	types	of	unreliability	in	ODRP:	The	“one-time	
unreliability”,	defined	as	changes	 that	 take	place	while	a	 trip	 is	executed	due	to	emerging	
requests,	and	the	“daily	unreliability”,	that	refers	to	facing	different	conditions	each	time	a	
trip	is	repeated.	Both	types	of	unreliability	worsen	when	vehicles	are	more	loaded,	i.e.,	the	
Extra-detour	Effect	 increases	unreliability	 as	well.	 This	 is	 not	 a	minor	 issue:	 for	 instance,	
Alonso-González	et	al.	(2020)	have	estimated	the	value	of	reliability	(that	refers	to	the	daily	
unreliability	discussed	above)	to	be	approximately	half	of	the	value	of	time.	

● Sharing	the	vehicle	with	more	users	can	be	uncomfortable	by	itself,	as	studied	by	Ho	et	al.	
(2018),	König	&	Grippenkoven	(2020),	and	Lavieri	&	Bhat	(2019),	who	propose	the	so-called	
“willingness	to	share”	to	study	the	difference	in	comfort	between	traveling	alone	or	with	
other	users.	Note	that	this	effect	only	occurs	when	vehicles	start	to	increase	their	number	of	
passengers	 .	 The	willingness	 or	 unwillingness	 to	 share	 a	 ride	 is	 related	 to	 an	 increase	 in	
crowding,	i.e.,	the	discomfort	perceived	by	passengers	when	having	to	share	a	limited	space	
(a	 vehicle	 or	 a	 station)	 with	 a	 large	 amount	 of	 passengers,	 ,	 which	 has	 been	 thoroughly	
studied	in	the	public	transport	literature,	as		surveyed	by	Tirachini	et	al.	(2013).	

	
Although	the	Extra-detour	effect	is	undesirable	for	passengers,	there	is	one	positive	consequence	of	
the	fact	that	𝜌′(𝑌) > 0	from	the	operators’	standpoint:	namely,	the	number	of	vehicles	per	hundred	
users	diminishes	thanks	to	an	increase	in	vehicle	usage.	This	source	of	scale	economies	is	usual	in	
shared	systems	(Fielbaum	et	al.,	2020a).	
	
3.3	The	Better-Matching	effect	
Some	papers	that	analyse	ODRP	have	reported	that,	when	the	demand	is	large	enough,	it	becomes	
possible	(and	thus	optimal)	to	form	more	efficient	groups	of	users	(Daganzo	et	al.,	2020,	Ke	et	al.,	
2020,	Lehe	et	al.,	2021,	Zhang	&	Nie,	2021).	This	is	an	intuitive	result,	as	a	larger	demand	implies	that	
there	are	more	feasible	requests	that	can	be	matched	together.	The	Better-matching	effect	is	thus	
defined	as	the	ability	to	create	groups	whose	routes	are	more	compatible	with	each	other	when	
the	 number	 of	 passengers	 increases,	 thanks	 to	 a	 larger	 pool	 of	 requests	 to	 choose	 from.	
Formally:	
	
'(!
	'+

≤ 0	for	ℎ = 𝑤, 𝑎, 𝑣	 	 	 	 	 	 	 	 	 	 (3)	
	
The	Better-matching	effect	is	illustrated	in	Figure	2,	where	users	1	and	2	are	first	grouped	together;	
when	 new	 passengers	 emerge,	 they	 are	 separated	 and	 matched	 with	 other	 users	 such	 that	 the	
resulting	routes	get	more	efficient.		
	
The	Better-matching	effect	also	emerges	thanks	to	the	flexibility	of	 the	routes,	 i.e.,	 it	 is	specific	 to	
ODRP	 systems.	However,	 it	 is	 similar	 to	 the	 increase	 in	 “directness”	 in	 public	 transport	 systems	
reported	by	Fielbaum	et	al.	(2020a),	who	argue	that	an	increased	number	of	passengers	enables	the	
definition	of	lines	that	require	fewer	detours	because	more	passengers	share	the	same	origins	and	
destinations.	
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This	effect	also	constitutes	a	source	of	scale	economies	for	operators,	as	reducing	detours	also	implies	
a	reduction	in	VHT	and	VKT.	The	Better-matching	effect	is	more	evident	when	the	assignment	is	done	
by	batches	of	users	(see	Section	3.1),	as	in	that	case	groups	are	formed	all	at	once;	however,	it	is	also	
present	under	event-based	approaches,	 as	 in	 that	 case	 the	groups	get	 formed	sequentially	as	 the	
individual	users	are	assigned	(for	instance,	in	the	example	shown	in	Figure	2,	it	is	not	relevant	if	the	
assignments	were	decided	all	together	or	one-by-one).		
	

	
Figure	2.	Example	of	the	Better-matching	Effect.	Both	in	the	top	row	(low	demand)	and	in	the	bottom	row	

(high	demand)	we	exhibit	groups	of	size	two.		In	the	top	row,	the	red	vehicle	is	instructed	to	serve	passengers	
1	and	2,	which	are	also	marked	with	a	red	color.	When	the	demand	grows	(bottom	row),	new	passengers	3	
and	4	appear,	allowing	the	system	to	form	more	efficient	groups.	User	1	is	now	grouped	with	user	3	and	

served	with	a	brown	vehicle.	Users	2	and	4	are	grouped	together	to	be	served	by	a	blue	vehicle.	The	color	of	
the	passengers	marks	which	vehicle	serves	them.	Total	delay	decreases	for	the	two	users	that	remain	from	

the	top	row,	improving	their	perceived	quality	of	service.	

3.4	The	Mohring	effect	
In	 public	 transport,	 the	 Mohring	 effect	 refers	 to	 the	 reduced	 waiting	 times	 that	 result	 from	 an	
increase	in	the	optimal	fleet	size	as	a	response	to	a	greater	demand	(Mohring,	1972).	Similar	effects	
have	been	found	for	non-shared	modes,	such	as	taxis	(Arnott,	1996)	and	ride-hailing	(Castillo	et	al.,	
2017);	 recent	papers	by	Kaddoura	&	Schlenther	 (2021)	and	Lee	et	al.	 (2021)	have	also	 found	an	
analogous	phenomenon	in	ODRP.	Mathematically,	this	is	represented	by	noting	the	obvious	fact	that			
𝐵′(𝑌) > 0	(more	users	require	more	vehicles),	and	that:	
	
'(!
',

≤ 0	for	ℎ = 𝑤, 𝑎	 	 	 	 	 	 	 	 	 	 (4)	
	
Note	that	Eq.	(4)	includes	walking	(access)	as	well	as	waiting.	This	is	because	a	larger	fleet	implies	
that	vehicles	are	denser	in	space,	hence	shorter	walks	are	required	(when	the	system	does	not	offer	
a	door-to-door	service),	as	also	analysed	in	the	case	of	public	transport	(Fielbaum	et	al.,	2020b)	and	
bike-sharing	systems	(Jara-Díaz	et	al.,	2022).	In	the	context	of	public	transport,	this	is	described	as	
the	“spatial	counterpart	of	the	Mohring	Effect”	by	Fielbaum	et	al.	(2020b).	
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3.5	Combination	of	the	three	effects	
We	have	described	three	sources	of	scale	effects:	two	positive	ones	(Better-matching	and	Mohring)	
and	one	negative	(Extra-detour)	 in	 the	case	of	users’	costs.	The	Better-matching	effect	 is	 induced	
directly	by	the	greater	demand,	which	enables	the	creation	of	more	efficient	groups,	 the	Mohring	
effect	is	indirectly	induced	by	a	larger	fleet,	which	diminishes	waiting	and	walking	times,	whereas	
the	Extra-detour	effect	is	derived	indirectly	from	the	larger	passenger	occupancy	rate	of	the	vehicles,	
which	increases	detours	and	degrades	the	quality	of	service	for	some	passengers.	As	the	three	effects	
might	 appear	 at	 the	 same	 time,	 it	 is	 uncertain	 which	 of	 them	 predominates.	 Formally,	 '-"

'+
=

'-"
')

𝜌′(𝑌) + '-"
',

𝐵′(𝑌) + '-"
'+
		 ,	where	the	first	term	is	negative	and	the	other	two	terms	are	positive.	

For	operators,	if	vehicle	size	is	exogenous,	both	the	Extra-detour	effect	and	Better-matching	effect	
reduce	average	costs,	and	therefore	are	sources	of	economies	of	scale;	otherwise,	the	Extra-detour	
effect	can	lead	to	larger	vehicles	which	increases	operators	costs	as	per	Eq.	(1).	In	Section	4,	when	
running	 simulations,	 we	 identify	 the	 relationship	 between	 the	 scale	 three	 effects	 for	 different	
demand	levels.	

4. Numerical	simulations	
We	now	run	numerical	simulations	of	an	ODRP	system	to	analyse	the	occurrence	of	the	scale	effects	
discussed	 above,	 and	 to	 see	 which	 of	 them	 predominates	 depending	 on	 the	 circumstances.	 The	
system	we	simulate	admits	walks,	is	non-profit	and	adapts	the	fleet	to	have	no	rejections.	To	do	so,	
we	leverage	the	assignment	method	from	Fielbaum	et	al.	(2021)	and	Alonso-Mora	et	al.	(2017),	by	
deciding	in	real-time	how	many	vehicles	should	be	in	operation,	apart	from	the	vehicle	assignment	
and	user	assignment.	In	what	follows,		we	discuss	how	to	compute	the	endogenous	fleet	depending	
on	the	demand.	

4.1	Computation	of	the	number	of	vehicles	in	the	ODRP	system	
In	order	to	compute	the	fleet	size	together	with	the	assignments	between	vehicles	and	users,	we	build	
upon	the	ODRP	model	proposed	by	Fielbaum	et	al.	(2021).	Such	a	model	extends	the	one	by	Alonso-
Mora	et	al.	(2017)	by	optimising	the	pick-up	and	drop-off	points,	which	might	differ	from	the	actual	
origins	and	destinations	of	 the	users	when	asking	 them	to	walk	 increases	overall	efficiency.	Both	
models	determine	how	to	operate	a	fixed	fleet	of	vehicles	to	serve	the	emerging	requests.	We	extend	
these	works	by	computing	the	fleet	endogenously.	We	first	explain	briefly	how	the	original	methods	
work,	and	then	describe	this	extension.	
	
The	ODRP	system	operates	over	a	directed	graph	𝐺 = (𝑁, 𝐴).	Each	request	𝑟 = (𝑜. , 𝑑. , 𝑡.)	is	a	triplet,	
representing	the	origin,	the	destination,	and	the	time	in	which	the	trip	is	requested.	Both	the	origins	
and	the	destinations	are	assumed	to	be	placed	over	the	nodes	of	the	graph.	The	assignment	model	
works	 using	 a	 receding	 horizon	 approach,	meaning	 that	 it	 accumulates	 the	 requests	 that	 emerge	
during	a	fixed	amount	of	time	𝛿	and	assigns	them	all	at	once	(hence	it	is	batch-based),	which	updates	
each	vehicle's	route.	When	such	an	assignment	is	decided,	the	vehicles	follow	their	updated	routes,	
and	the	system	begins	to	accumulate	requests	for	a	time	𝛿	again,	starting	a	new	iteration.		
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Let	us	focus	now	on	a	single	iteration,	denoting	by	𝑅	the	set	of	requests	to	be	assigned,	and	by	𝑉	the	
current	state	of	the	fleet	of	vehicles.	Each	vehicle	𝑣	is	characterised	by	its	position	𝑃!	and	the	set	of	
requests	assigned	to	it	𝑆!	(either	in	the	vehicle	or	waiting	for	it).	The	assignment	between	𝑅	and	𝑉	
takes	place	following	these	three	steps:	
	

● Determine	which	are	the	feasible	trips.	A	trip	𝑇	is	defined	by	a	group	of	requests	𝑟𝑒𝑞(𝑇) ⊆ 𝑅	
and	a	vehicle	𝑣𝑒ℎ(𝑇),	so	that	𝑇	is	feasible	if	the	requests	in	𝑟𝑒𝑞(𝑇)	can	be	transported	together	
by	 𝑣𝑒ℎ(𝑇),	 respecting	 some	 bounds	 on	 waiting	 and	 walking	 times,	 and	 on	 total	 delay	
(denoted,	 respectively,	𝛺" , Ω# ,	 and	𝛺!).	 Such	 bounds	 affect	 users	 in	 𝑟𝑒𝑞(𝑇)	 and	 also	 in	
𝑆!/&(𝑇),	whose	routes	might	be	updated	due	to	the	new	requests.	The	delay	is	defined	as	the	
extra	time	faced	by	a	user	compared	to	beginning	her	trip	immediately,	with	no	walking	and	
following	the	shortest	path	between	her	origin	and	destination.	Each	trip	𝑇	might	be	served	
by	more	than	one	route	so	that	taking	the	route	𝜋	imposes	a	cost	to	the	system	given	by	Eq.	
(5).	The	route	𝜋	is	defined	by	the	nodes	in	which	the	vehicle	stops	to	serve	everybody,	thus	it	
contains	implicitly	the	pick-up	and	drop-off	points	for	every	user.	

	
𝑐𝑜𝑠𝑡(𝑇, 𝜋) = ∑ 𝐶%(𝑇, 𝜋).∈./1((3) + ∑ Δ𝐶%(𝑇, 𝜋).∈5#$!(3) + Δ𝐶$(𝜋)		 	 	 	 (5)	
	

Where	the	first	term	represents	the	users’	costs	for	passengers	in	trip	𝑇,	defined	as	a	weighted	
sum	between	waiting,	walking,	and	in-vehicle	times;	the	second	term	represents	the	extra	
costs	 induced	 to	 the	users	 that	were	being	served	by	 the	vehicle	prior	 to	 this	assignment	
(because	their	waiting	and	in-vehicle	times	can	increase);	and	the	third	term	expresses	the	
increase	in	operational	costs,	that	are	assumed	to	be	proportional	to	the	route	length.	The	
route	that	offers	the	minimum	cost	is	selected,	so	that	the	trip	𝑇	is	characterised	by	a	single	
figure	that	we	denote	𝑐𝑜𝑠𝑡(𝑇).	
	
It	 is	 worth	 commenting	 that	 computing	 all	 the	 feasible	 trips	 can	 be	 computationally	
expensive,	as	their	amount	can	increase	exponentially	with	the	number	of	requests	(note	that	
this	 increase	 in	 the	number	of	 feasible	 trips	 is	 the	mathematical	expression	of	 the	Better-
matching	effect,	while	the	specific	appearance	of	trips	with	many	users	represents	the	Extra-
detour	effect).	Such	an	issue	is	faced	first	by	making	a	smart	search	of	the	feasible	trips	(using	
that	if	vehicle	𝑣	is	able	to	serve	group	𝐺,	then	it	must	be	true	that	𝑣	can	serve	every	subset	of	
𝐺	as	well),	and	also	by	using	a	number	of	heuristics,	explained	in	detail	by	Fielbaum	et	al.	
(2021),	to	compute	the	sequence	in	which	the	users	are	served	and	the	pick-up	and	drop-off	
points.		
	

● Once	 the	 set	𝛤	 of	 potential	 trips	 is	 known	with	 their	 respective	 costs,	 some	 of	 them	 are	
selected	and	constitute	the	actual	assignment.	To	do	this,	an	Integer	Linear	Programing	(ILP)	
problem	defined	by	Eqs.	(6)-(8)	is	solved:	
	

	
𝑚𝑖𝑛

6,8	∈{0,1}
	∑ 𝑥3𝑐𝑜𝑠𝑡(𝑇)3∈; +∑ 𝑝<=𝑧. 	.∈> 		 	 	 	 	 	 	 (6)	
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s.t.	𝑧. +∑ 𝑥.3:.∈./1(3) = 1		∀𝑟	 ∈ 𝑅	 	 	 	 	 	 	 	 (7)	
						∑ 𝑥_𝑇3:!/&(3)@! ≤ 1	∀𝑣	 ∈ 𝑉		 	 	 	 	 	 	 	 (8)	
	

Binary	variables	𝑥3 	represent	the	trips	that	are	going	to	be	executed	(marked	by	𝑥3 = 1).	In	
the	original	model	we	are	now	describing,	that	operates	with	a	fixed	fleet,	 it	 is	not	always	
possible	 to	 serve	 all	 the	 trips	 (the	 number	 of	 vehicles	might	 not	 be	 enough),	 so	 rejected	
requests	are	marked	by	𝑧. = 1.	Each	rejected	request	imposes	a	penalty	𝑝<=	to	the	system,	so	
Eq.	 (6)	 is	 the	 objective	 function	 to	 be	minimised	 when	 deciding	 the	 assignment.	 Eq.	 (7)	
ensures	that	each	request	is	either	rejected	or	belongs	to	a	trip	that	is	going	to	be	executed,	
while	Eq.	(8)	ensures	that	each	vehicle	is	assigned	to	no	more	than	one	trip.	
	

● Finally,	 a	 rebalancing	 step	 instructs	 idle	 vehicles	 (i.e.,	 those	with	 no	 requests	 before	 the	
assignment	 and	who	 did	 not	 receive	 anyone	 here)	 to	move	 to	 certain	 areas	where	more	
vehicles	are	needed.		In	our	setting,	we	execute	a	simple	rebalancing	step	when	simulating	a	
feeder	ODRP	system,	as	explained	in	Section	4.2.1.	We	do	not	rebalance	vehicles	in	the	other	
scenarios,	as	the	rebalancing	step	proposed	by	Alonso-Mora	et	al.	(2017)	sends	vehicles	to	
the	places	where	users	have	been	recently	rejected,	which	does	not	occur	here	where	we	
impose	that	everyone	must	be	served.	

	
In	this	paper,	we	extend	this	model	to	decide	how	many	vehicles	to	use	at	the	same	time	as	deciding		
the	vehicle	and	user	assignments.	To	do	so,	we	assume	that	the	system	begins	with	no	vehicles,	and	
that	there	are	some	spots	in	the	city	(which	is	a	set	of	nodes	𝑀	 ⊂ 𝑁)	where	potential	vehicles	are	
placed.	 At	 each	 iteration	 (i.e.,	 each	 time	 a	 batch	 of	 requests	 is	 assigned),	 the	 fleet	 of	 vehicles	 is	
composed	of	two	sets:	the	one	inherited	from	the	previous	iteration,	plus	a	set	containing	one	non-
activated	vehicle	per	request	𝑟 ∈ 𝑅,	that	is	located	in	the	node	in	𝑀	that	is	closest	to	its	origin	𝑜. .	If	a	
non-activated	vehicle	is	assigned	to	a	group	of	requests,	an	activation	cost	𝑐A	has	to	be	paid,	and	the	
vehicle	becomes	available	for	the	rest	of	the	period	of	operation	without	paying	the	activation	cost	
again.	The	parameter	 	𝑐A	 includes	all	 the	 costs	 that	do	not	depend	on	 the	distance	driven	by	 the	
vehicle,	such	as	capital	costs.	This	is	formalised	by	altering	the	cost	of	the	trips.	Denoting	by	𝐴(𝑣) = 1	
if	vehicle	𝑣	is	activated	(i.e.,	inherited	from	a	past	iteration)	and	𝐴(𝑣) = 0	if	not,	Eq.	(5)	is	modified	to	
build	the	new	cost	function	𝑐𝑜𝑠𝑡A(𝑣),	given	by	
	
𝑐𝑜𝑠𝑡A(𝑣) = 𝑐𝑜𝑠𝑡(𝑣) + 𝑐A ⋅ [1− 𝐴(𝑣𝑒ℎ(𝑇))]	 	 	 	 	 	 	 (9)	
	
Following	 Tirachini	 &	 Hensher	 (2011)	 and	 Jara-Díaz	 et	al.	 (2017,	 2020),	 we	 assume	 that	 both	
components	of	operators’	costs	grow	linearly	with	the	capacity	of	the	vehicle.	That	is,	recalling	that		
𝐾	 is	 the	capacity	of	the	vehicles,	and	denoting	by	𝑐$	 the	proportionality	constant	that	defines	the	
costs	depending	on	the	routes’	lengths,	then:	
	
𝑐$ = 𝑐$B + 𝑐$C𝐾,			𝑐A = 𝑐AB + 𝑐AC𝐾	 	 	 	 	 	 	 	 (10)	
	
As	we	 now	have	 one	 non-activated	 vehicle	 per	 request,	 it	 is	 always	 feasible	 to	 serve	 everybody.	
Therefore,	we	do	not	longer	include	variables	𝑧. 	in	the	ILP	to	be	solved,	removing	the	second	term	
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from	Eq.	(6),	and	modifying	Eq.	(7)	accordingly	to	ensure	that	each	request	belongs	to	exactly	one	
assigned	trip,	i.e.	
	
∑ 𝑥.3:.∈./1(3) = 1		∀𝑟 ∈ 𝑅	 	 	 	 	 	 	 	 	 (11)	 	
	
The	 problem	 is	 solved	 using	 the	 standard	 commercial	 ILP	 solver	 Gurobi.	 Finally,	we	 include	 yet	
another	extension	to	the	base	model:	we	assume	that	a	fixed	time	𝜏	is	spent	each	time	the	vehicle	
stops	to	pick	up	or	drop	off	one	or	more	passengers.	We	include	this	fact	because	it	is	relevant	when	
analysing	scale	economies,	as	sometimes	the	vehicle	might	use	a	single	stop	for	more	than	one	pick-
up/drop-off,	saving	some	time.	

4.2	The	scenarios	
The	analysis	of	scale	economies	requires	increasing	the	demand	level	without	changing	its	spatial	
distribution.	We	utilise	the	model	described	in	Section	4.1	under	two	different	types	of	scenarios.	The	
first	one	is	an	ad-hoc	network,	namely	an	extension	of	the	single-line	model	that	has	proved	useful	
for	scale	analysis	in	transport	systems	in	the	past	(see	Section	2.2).	The	second	one	adapts	a	real-life	
database	from	Manhattan	for	this	purpose.	

4.2.1	Extending	the	single-line	model 
The	traditional	single-line	model	studies	the	operational	characteristics	of	a	public	transport	system	
in	which	the	vehicles	follow	a	predefined	path,	so	everything	is	one-dimensional.	Specific	versions	
are:	

● The	circular	model,	in	which	the	line	tours	a	circuit	that	presents	the	same	average	number	
of	users	at	every	point.	This	model	represents	a	line	that	carries	a	similar	load	all	along	its	
length. 

● The	linear	model,	in	which	vehicles	travel	in	both	directions	along	a	linear	corridor	between	
two	terminals.	A	particular	case	of	the	linear	model	is	the		feeder	model,	in	which	users	board	
the	vehicle	across	its	path,	and	they	all	alight	at	the	end.	This	model	represents	a	line	that	
goes	to	some	relevant	final	destination,	typically	a	public	transport	station,	to	board	a	high-
capacity	public	transport	mode	(e.g.,	rail,	Bus	Rapid	Transit).	
	

In	any	of	these	alternatives,	the	vehicle	route	is	fixed	beforehand	and	always	the	same.	We	aim	to	
extend	 this	model,	 keeping	most	of	 its	 simplifying	assumptions	 that	make	 it	 a	powerful	 tool,	 but	
allowing	for	online	decisions	regarding	the	routes.	To	do	that,	we	deploy	a	grid	surrounding	each	bus	
stop,	where	exact	origins	and	destinations	are	situated.	In	the	traditional	model,	such	a	grid	can	be	
seen	as	an	underlying	street	pattern	that	does	not	need	to	be	explicit	because	users	need	to	walk	
towards	 the	 (fixed)	 bus	 stops	 anyhow.	 In	 such	 a	 case,	walking	 times	 and	 distances	 are	 assumed	
exogenous,	meaning	that	the	operation	and	optimization	of	the	public	transport	line	are	not	affected.	
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	 	 	 a)	 	 	 	 	 	 b)	
Figure	3.	Extensions	of	the	single-line	model	to	recreate	the	network	in	which	the	ODRP	system	operates,	
replacing	either	a	feeder	line	(a)	or	a	circular	line	(b).	Origins	can	be	placed	in	any	intersection,	and	the	same	
happens	with	destinations	in	the	circular	model.	In	both	cases,	there	are	8	zones,	each	formed	by	a	3x5	grid.	
Red	dots	represent	the	stations	in	which	the	ODRP	vehicles	begin	their	journeys.	Dark	black	streets	are	
bidirectional	and	can	be	toured	with	a	higher	speed.	The	traditional	single-line	model	is	recovered	by	

considering	only	the	long	avenue	that	connects	all	the	red	dots.	
	
To	be	precise,	we	assume	that	each	bus	stop	belongs	to	a	zone,	which	is	an	𝑎	 × 𝑏	grid,	with	𝑎, 𝑏	odd	
numbers,	so	that	the	bus	stop	is	located	at	the	centre	of	the	grid.	That	set	of	stops	represent	where	
the	potential	vehicles	for	the	ODRP	system	are	located	(the	set	𝑀	defined	above).	The	central	streets	
of	the	grid	are	bidirectional,	and	vehicles	tour	them	at	velocity	𝑣1,	whereas	the	rest	of	the	streets	are	
unidirectional5,	with	alternate	directions	and	velocity	𝑣2,	where	𝑣2 < 𝑣1.	Having	streets	of	different	
velocities	and	directions	help	to	capture	that	not	all	routes	are	equally	good	for	the	vehicle	to	follow.	
The	whole	network	is	formed	by	chaining	consecutive	zones.	If	there	are	𝑍	zones,	this	makes	a	𝑍 ⋅
𝑎	 × 𝑏	grid	in	the	feeder	model;	in	the	circular	model,	the	same	happens,	but	the	last	zone	is	chained	
with	the	first	one,	forming	a	circular	grid.	Both	networks	are	depicted	in	Figure	3.	
	
Regarding	the	demand,	we	want	to	keep	the	homogeneity	assumptions	from	the	single-line	model	
but	enabling	for	more	complex	routes.	A	constant	number	of	users	𝑌	emerge	per	time	unit,	and	the	
exact	 origin	 is	 random:	we	 first	 choose	 the	 zone	with	 uniform	probability;	within	 that	 zone,	 the	
central	node	is	chosen	with	probability	𝑝,	 the	rest	of	the	nodes	located	in	the	central	streets	with	
probability	𝑝𝛾,	 and	 the	nodes	out	of	 the	 central	 streets	with	probability	𝑝𝛾2.	 The	parameter	𝑝	 is	
adjusted	to	make	the	sum	of	the	probabilities	within	every	zone	equal	to	1,	and	the	parameter	𝛾 ∈
(0,1)	controls	how	dispersed	the	demand	is	within	a	zone	(the	lower	the	𝛾,	the	more	concentrated	
the	demand	in	the	vicinity	of	the	bus	stop).	The	destination	is	computed	differently	depending	on	the	
model:	in	the	feeder	one,	everybody	goes	to	the	centre	of	the	final	zone,	whereas	in	the	circular	model,	
the	destination	zone	 is	 located	𝑙	zones	ahead,	plus	a	random	variable	that	 is	obtained	rounding	a	
normal	distribution	with	mean	zero	and	variance	𝜎2;	the	exact	destination	is	found	within	that	zone	
using	the	same	rules	involving	𝑝	and	𝛾	as	for	the	origin.	
	

 
5	In	the	feeder	model,	the	first	and	last	transversal	streets	are	also	bidirectional	so	that	there	are	no	isolated	nodes.	
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As	mentioned	above,	in	the	feeder	model	we	need	to	rebalance	idle	vehicles	to	prevent	them	from	
accumulating	in	the	common	destination	of	all	users:	after	reaching	that	node,	they	are	sent	towards	
the	 central	 node	 of	 the	 first	 zone	 (i.e.,	 the	 one	 located	 at	 the	 largest	 distance	 from	 the	 shared	
destination).	Such	vehicles	will	not	necessarily	arrive	there	because	they	will	be	considered	available	
in	the	following	iterations,	meaning	that	they	might	receive	new	passengers	before	reaching	the	first	
zone.	

4.2.2	The	Manhattan	scenario	
Similar	to	other	studies	that	have	simulated	ODRP	(e.g.,	Alonso-Mora	et	al.,	2017,	Simonetto	et	al.,	
2019),	we	leverage	the	public	database	generated	by	the	NYC	Taxi	&	Limousine	Commission,	that	
contains	all	the	taxi	trips	that	are	executed	in	Manhattan.	For	each	trip	request,	we	know	the	number	
of	users,	its	time,	origin,	and	destination.	The	graph	is	composed	of	4092	nodes	and	9453	arcs.	We	
consider	one	hour	of	the	operation	of	the	system,	just	after	1	pm	of	January	15th,	2013,	which	has	
10774	trip	requests.	In	order	to	perform	scale	analysis	while	keeping	the	spatial	distribution	of	the	
demand	 somewhat	 constant,	 we	 repeat	 the	 simulations	 several	 times,	 each	 time	 increasing	 the	
number	of	requests	that	are	considered.	To	be	precise,	for	every	repetition,	and	before	running	the	
simulations	 that	 represent	 one	 hour	 of	 operation,	 we	 decide	 randomly	whether	 each	 request	 is	
considered	or	not.	 The	probability	 of	 including	 a	 request	 is	 the	 same	 for	 every	 request,	 and	 this	
probability	increases	for	each	repetition.	By	this	means,	the	set	of	requests	to	be	assigned	is	larger	
every	time,	but	their	spatial	distribution	is	kept	on	average,	as	the	requests	are	selected	randomly	
from	the	same	universe	set.	
	
Here	there	is	no	natural	candidate	for	where	the	vehicles	should	begin	their	journeys	when	they	are	
activated	(the	equivalent	to	the	centre	of	each	zone	in	the	single-line	model).	To	face	this	issue,	we	
cluster	the	network,	finding	the	minimum	number	of	centres	such	that	every	node	in	the	network	
can	be	reached	in	less	than	𝛺"	from	at	least	one	centre.	This	problem	is	solved	by	an	ILP	(described	
in	detail	by	Wallar	et	al.	2018),	which	leads	to	19	centres.	Therefore,	when	a	request	needs	to	travel	
from	a	node	𝑥,	the	corresponding	potential	vehicle	will	be	placed	in	the	centre	that	is	located	closest	
to	𝑥.	

4.2.3	Definition	of	the	bounds	in	the	quality	of	service	
As	explained	in	Section	4.1.1,	the	assignment	procedure	in	ODRP	imposes	predefined	bounds	on	the	
quality	of	service,	namely	maximum	waiting	(𝛺")	and	walking	(𝛺#)	times,	as	well	as	a	maximum	total	
delay6	(𝛺!).	Defining	such	bounds	is	a	relevant	issue,	as	it	has	relevant	impacts	on	the	performance	
of	the	ODRP	system.	For	instance,	if	the	bounds	are	too	tight	and	users	are	too	spread,	then	the	system	
might	require	to	allocate	almost	one	different	vehicle	per	request,	leading	to	a	huge	fleet;	on	the	other	
hand,	 if	 the	bounds	are	 too	 large	(or	 inexistent),	one	single	vehicle	might	be	able	 to	serve	all	 the	
requests,	but	offering	an	awful	 (and	unrealistic)	quality	of	 service.	We	will	 consider	 two	ways	 in	
which	these	bounds	are	defined:	

 
6 Such	bounds	ensure	that	users	will	indeed	accept	the	assignment	proposed	by	the	system	rather	than	searching	for	an	
alternative	 mode.	 Moreover,	 without	 them	 the	 algorithmic	 burden	 of	 the	 problem	would	 be	 unmanageable,	 as	 every	
possible	group	of	users	could	be	feasibly	served	by	any	vehicle.	
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a. Endogenous	bounds	

First,	we	consider	a	case	in	which	the	bounds	are	calculated	as	a	function	of	the	demand,	using	longer	
time	windows	when	the	demand	is	 low.	 	This	 is	done	for	the	single-line	model,	as	 it	mimics	what	
passengers	 usually	 face	when	 using	 public	 transport:	when	 they	want	 to	make	 a	 trip	 on	 a	 high-
demand	 corridor,	 they	 can	 rapidly	 find	 a	 bus	 (or	 any	 alternative	mode	 they	 are	 using),	 and	 the	
contrary	happens	in	low-demand	areas	(a	similar	argument	has	been	proposed	by	Yan	et	al.,	2020	
when	 proposing	 their	 dynamic	 waiting	 strategy).	 Thus,	 we	 define	 the	 bounds	 to	 replicate	 this	
behaviour,	 by	 means	 of	 the	 classical	 single-line	 model	 by	 Jansson	 (1980)	 and	 the	 posterior	
adaptations	by	Jara-Díaz	&	Gschwender	(2009),	described	in	Appendix	A.1,	where	the	key	variable	is	
the	optimal	frequency	𝑓.	The	bounds	are	defined		as	follows:	
	

● Waiting:	The	maximum	waiting	time	that	can	be	faced	in	the	public	transport	system	occurs	
when	a	passenger	arrives	at	the	station	just	after	a	bus	leaves,	waiting	for	1/𝑓	(a	quantity	that	
decreases	with	the	number	of	passengers).	Recalling	that	when	a	vehicle	is	activated,	it	goes	
from	the	station	to	the	pick-up	point,	we	need	to	ensure	that	there	is	always	enough	time	to	
wait	for	such	a	movement.	Denoting	by	𝑡1the	vehicle-time	from	the	station	to	the	corner	of	
the	zone’s	grid,	we	use	𝛺" = 𝑚𝑎𝑥{1

D
, 𝑡1}.		

● Walking:	The	maximum	amount	of	walking	in	the	public	transport	systems	is	𝑡2,	defined	as	
the	walking	time	between	the	station	and	a	corner	of	the	zone’s	grid,	so	we	use	𝛺" = 𝑡2.	When	
we	simulate	the	case	in	which	ODRP	offers	a	door-to-door	service,	this	bound	is	reduced	to	
zero.	

● Delay:	There	are	 two	sources	of	delay	 in	public	 transport	with	 respect	 to	 the	 time	 in	 the	
vehicle:	walking	and	waiting.	The	first	one	should	be	accounted	for	twice,	at	the	origin	and	
destination.	Therefore,	we	use	𝛺! = 𝑚𝑎𝑥{1

D
, 𝑡1} + 2𝑡2.	

	
b. Exogenous	bounds	

Defining	 the	bounds	as	 a	 function	of	 the	demand	volume	may	have	a	drawback,	namely	 that	 the	
varying	bounds	may	interact	with	the	other	scale	effects	that	we	are	analysing.	For	this	reason,	we	
also	study	the	case	in	which	the	bounds	are	exogenous,	using	𝛺" = 3	minutes,	𝛺# = 4	minutes,	and	
𝛺! = 6	minutes.	

4.3	Results	
We	simulate	one	hour	of	operation	of	the	ODRP	system,	for	increasing	demand	levels,	 in	order	to	
identify	scale	effects.	The	numeric	values	of	the	parameters	are	shown	in	Table	A.1	in	the	Appendix.	
All	figures	in	this	section	use	a	logarithmic	scale	in	the	x-axis,	because	the	phenomena	that	we	study	
tend	to	stabilise	when	the	number	of	passengers	is	high,	so	zooming	in	the	lower	values	helps	the	
analysis.	The	simulations	are	run	for	different	values	of	𝐾	(the	size	of	the	ODRP’s	vehicles),	including	
vehicles	with	capacity	for	2,	3,	4,	and	5	passengers.	
	
Most	results	consider	the	base	case	in	which	we	assume	the	availability	of	automated	vehicles	(AV)	
and	walks	are	allowed.	We	assume	that	AV	differ	from	human-driven	vehicles	in	the	parameters	that	
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represent	operator	costs:	on	the	one	hand	there	is	a	reduction	in	operating	cost	due	to	savings	in	
driver	wages,	on	the	other	hand	there	is	an	increase	in	capital	cost	due	to	the	added	cost	to	provide	
vehicles	with	automation	capabilities,	which	is	taken	from	Tirachini	and	Antoniou	(2020).		We	will	
assume	that	the	velocity	at	which	vehicles	run	do	not	depend	on	such	a	technology:	differences	in	
velocity	due	to	automation	are	still	uncertain,	as	AV	might	run	faster	(thanks	to	better	coordination	
among	vehicles)	or	slower	(due	to	safety	reasons,	particularly	in	urban	roads	when	surrounded	by	
pedestrians,	cyclists	and	human-driven	vehicles).	Specific	assumptions	about	differences	in	velocity	
may	have	a	large	impact	on	the	results	(Tirachini	&	Antoniou,	2020).	

4.3.1	Time	windows	adapted	endogenously	to	demand	-	Circular	model	
We	first	describe	the	results	when	the	time	windows	𝛺" , Ω# , Ω!	are	calculated	as	a	function	of	the	
demand.	We	show	the	results	of	the	circular	model	in	Figures	4	to	8.	Figure	4a	shows	a	condensed	
way	to	describe	the	quality	of	service	of	the	ODRP	system	from	the	users’	point	of	view:	total	delay,	
i.e.,	the	extra	time	faced	by	them	when	they	use	this	system	instead	of	travelling	in	a	private	vehicle.	
Figure	4b	exhibits	the	average	occupancy	rate	[pax/veh]	per	vehicle	𝜌	at	the	end	of	the	simulation,	
which	was	identified	as	the	crucial	factor	for	the	existence	of	diseconomies	of	scale	(the	Extra-detour	
Effect).	Total	delay	includes	walking	time,	waiting	time,	and	detour	once	in	the	vehicle.	Scale	effects	
are	evident:	At	the	very	beginning	of	the	curve,	up	to	around	250	passengers/h,	there	is	a	reduction	
in	total	delay.	However,	when	the	number	of	passengers	continues	to	grow,	diseconomies	of	scale	
appear	 as	 the	 average	 delay	 increases	 to	 5	 min/passenger	 for	 demands	 up	 to	 almost	 1000	
passengers/h.	 Remarkably,	 the	 appearance	 of	 diseconomies	 of	 scale	 coincides	 exactly	 with	 the	
moment	 in	which	𝜌	 starts	 to	 increase	(before	 that,	 it	 slowly	decreases,	which	 is	explained	by	 the	
changes	 in	 the	 time	windows).	Then,	 the	average	delay	 is	once	again	 reduced,	 to	 reach	around	2	
min/passenger	for	3000	passengers/h.	
	

	
a)	 	 	 	 	 b)	

Figure	4.	a)	Average	total	delay	faced	by	the	users,	and	b)	Average	load	per	vehicle	at	the	end	of	the	
simulation,	in	the	ODRP	system	for	the	circular	model	with	endogenous	time	windows,	as	the	number	of	

hourly	passengers	grows.	Different	curves	represent	different	vehicles’	sizes.	
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a)	 	 	 	 b)	 	 	 	 c)	

Figure	5.	Average	waiting	time	(a),	walking	time	(b)	and	detour	(c),		faced	by	the	users	of	the	ODRP	system	in	
the	circular	model	with	endogenous	time	windows,	as	the	number	of	hourly	passengers	grows.	Different	

curves	represent	different	vehicles’	sizes.	
	
To	delve	into		the	curves	from	Figure	4	and	identify	the	emergence	of	the	three	effects	described	in	
Section	3,	we	disentangle	the	total	delay	per	passenger	in	its	three	components	in	Figure	5:	Waiting	
(a),	walking	(b),	and	detour	(c).	Waiting	times	evolve	similarly	to	total	delay.		
	
Let	us	begin	our	analysis	after	the	strong	drop	at	the	beginning	of	the	graph.	The	remainings	of	the	
curves	reflect	that	the	average	delay	first	increases	and	then	slowly	decreases.	Diseconomies	of	scale	
emerge	when	𝑌	reaches	about	250	passengers/h.	Until	that	point,	there	is	little	sharing	in	the	system	
(below	1.3	users	per	vehicle),	because	it	is	difficult	to	find	compatible	users,	implying	that	most	users	
travel	alone7.	When	vehicles	begin	to	be	shared	with	more	people,	one	of	its	consequences	is	that	
vehicles	 do	 not	 go	 directly	 to	 pick	 up	 the	 users	 but	 deviate	 to	 serve	 some	 co-travellers,	 hence	
increasing	waiting	 times.	This	 effect	dominates	 for	demands	greater	 than	250	passengers/h.	The	
same	phenomenon	can	be	seen	related	to	walking	and	the	detour,	which	also	start	to	increase	when	
crossing	the	same	threshold.	Noteworthy	is	that	the	smaller	the	vehicle,	the	lower	the	detour,	and	
that	detours	can	be	negative,	meaning	 that	 the	distance	between	 the	pick-up	and	drop-off	points	
might	be	lower	than	between	the	corresponding	origins	and	destinations	(due	to	walking).	Therefore,	
our	simulations	confirm	the	Extra-detour	effect	as	a	relevant	source	of	diseconomies	of	scale	in	
ODRP	systems:	an	increase	in	the	number	of	users	implies	that	the	vehicles	will	be	shared	by	
more	passengers,	which	increases	average	travelling	times.		
	
The	Extra-detour	Effect	eventually	gets	exhausted.	At	some	point,	 the	vehicles	no	 longer	 increase	
their	load	(when	they	are	running	at	capacity,	considering	their	current	passengers	and	the	ones	that	
are	waiting	to	be	picked	up).	When	this	happens,	Figures	5a	and	5b	reveal	that	waiting	and	walking	
times	begin	to	diminish.		That	is	to	say,	the	two	sources	of	scale	economies	described	in	Section	3	
begin	to	dominate:	the	Mohring	Effect	and	the	Better-matching	Effect.	We	can	synthesise	these	scale	

 
7	This	occurs	in	some	real-life	scenarios.	In	several	towns	around	Munich,	Germany,	during	some	specific	time	windows	in	
which	the	demand	is	very	low	(between17:30	and	5:45	in	working	days)	,	the	public	transport	agency	sends	private	taxis	
to	fulfil	it.	This	result	has	also	been	reported	by	Daganzo	et	al.	(2020)	when	comparing	three	different	demand	levels	with	
vehicles	of	capacity	2	pax/veh.	
See	 https://www.mvv-muenchen.de/mobilitaetsangebote/bedarfsverkehr/mvv-ruftaxi/index.html	 (Accessed:	
10/08/2022).	
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effects	by	stating	that	two	relevant	sources	of	scale	economies	in	ODRP	are	that	the	increase	in	
the	 number	 of	 users	 leads	 to	 1)	 a	 larger	 fleet,	 which	 reduces	waiting	 and	walking	 times,	
similar	to	the	Mohring	Effect	 in	 fixed-route	public	 transport,	and	2)	matching	users	whose	
routes	are	more	compatible.		
	
The	quick	drop	at	the	beginning	of	the	curve	is	explained	by	the	Mohring	Effect,	but	only	regarding	
waiting	times	because	for	such	a	demand	there	is	almost	no	walking.	As	vehicles’	occupancy	rate	does	
not	 increase	 yet,	 neither	 the	 Extra-detour	 nor	 the	 Better-matching	 Effects	 operate	 significantly.	
Actually,	 the	average	occupancy	rate	decreases	slightly,	due	 to	 the	decrease	 in	𝛺"	 and	𝛺! ,	which	
makes	the	Mohring	Effect	even	stronger	as	more	vehicles	are	needed.		
	
It	is	worth	commenting	that	the	Mohring	Effect	is	usually	more	important	at	low	demands	because	
when	the	number	of	vehicles	is	already	large,	the	marginal	impact	of	an	additional	vehicle	is	low	in	
reducing	waiting	times.	Then,	the	drop	in	average	times	at	the	end	of	the	curve	is	mainly	driven	by	
the	Better-matching	Effect.	
	
The	fact	that	there	is	no	walking	at	all	when	the	demand	is	very	low	is	explained	because	there	is	
little	sharing	and	it	is	difficult	for	vehicles	to	chain	consecutive	trips.	Thus,	many	times	the	only	user	
involved	 when	 deciding	 a	 vehicle’s	 route	 is	 the	 one	 being	 transported,	 and	 for	 her	 it	 is	 more	
comfortable	to	have	a	door-to-door	service	(as	usual	in	the	literature	and	shown	in	Table	A1	in	the	
Appendix,	we	assume	that	𝑝# > 𝑝!).	The	absence	of	walks	also	explains	why	the	detour	is	longer	at	
the	beginning	of	the	curves.	This	suggests	that	if	𝑝#	was	low	(but	greater	than	zero),	the	Mohring	
Effect	would	affect	walking	times	for	low	demand	volumes	as	well.	Note	that	the	average	walking	
time	increases	slightly	before	the	large	jump	at	250	passengers/h,	which	is	explained	by	the	changes	
in	the	time	windows,	as	sometimes	such	short	walks	can	enable	a	group	that	would	be	otherwise	
infeasible.		
	
The	analysis	above	confirms	the	three	sources	of	scale	discussed	in	this	paper.	However,	the	varying	
bounds	on	the	quality	of	service	do	play	a	role	in	the	analysis,	which	is	why	in	Section	4.2.3	we	analyse	
the	case	with	fixed	bounds,	where	we	show	that	the	qualitative	conclusions	remain	valid.	

	
The	comparison	among	different	vehicle	sizes	is	also	informative.	The	smaller	the	vehicle,	the	lower	
the	 number	 of	 passengers	 per	 vehicle,	 and	 thus	 the	 detour.	 Walking	 times	 are	 not	 affected	
significantly	by	the	vehicle	capacity	adopted.	On	the	other	hand,	waiting	times	are	slightly	larger	for	
smaller	vehicles	when	the	demand	lies	in	the	range	of	250-1000	passengers/h.	As	the	fleet	size	is	
mostly	unaffected	by	the	vehicle	capacity	within	that	range	(see	Figure	6a),	it	is	more	likely	that	the	
assigned	vehicle	is	not	immediately	available	when	vehicles	are	small.	
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a)	 	 	 	 	 	 b)	

Figure	6.	Fleet	size	(a)	and	Vehicle-Hours-Travelled	(b),	normalised	by	the	number	of	passengers,	as	this	last	
quantity	grows.	Different	curves	represent	different	vehicles’	sizes.	

	
The	evolution	of	the	components	of	operator	costs	(depicted	in	Figure	6)	is	mostly	characterised	by	
scale	economies	when	exceeding	the	threshold	in	which	vehicles	start	to	be	shared	more	intensively;	
before	the	threshold,	it	exhibits	an	irregular	pattern	in	which	the	randomness	of	the	requests	play	
the	 most	 relevant	 role.	 This	 is	 reflected	 in	 the	 fleet	 size	 (Figure	 6a),	 which	 also	 exhibits	 scale	
economies	in	public	transport,	and	too	in	operating	costs	(vehicle	hours	travelled	VHT,	Figure	6b).	
That	is	to	say,	an	operator-related	source	of	scale	economies	is	given	by	the	increase	in	sharing,	
which	makes	the	number	of	vehicles	and	VHT	increase	less	than	linearly	with	the	number	of	
users.	 It	 is	 noteworthy	 that	using	 smaller	 vehicles	 requires	 a	 larger	 fleet	when	used	at	 capacity,	
which	 also	 increases	 VHT.	 Both	 curves	 eventually	 stabilise,	 meaning	 that	 this	 source	 of	 scale	
economies	gets	exhausted.	

	
a)	 	 	 	 	 b)	

Figure	7.	Average	delay	(a)	and	Seats	per	passenger	(b),	yielded	by	the	ODRP	system	in	the	circular	model	
with	endogenous	time	windows,	as	the	number	of	hourly	passengers	grows,	when	the	optimal	capacity	is	

selected.	
	

So	 far,	 we	 have	 exhibited	 results	 for	 a	 range	 of	 vehicle	 capacities,	 from	 2	 to	 5	 passengers/veh.	
However,	the	system	should	utilise	vehicle	sizes	that	minimise	total	costs.	Our	results	indicate	that	
the	 smallest	 vehicles	 (capacity	 2)	 should	 be	 used	 if	𝑌 ≤ 550,	 and	 capacity	 3	 thereafter.	 Figure	 7	
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synthesises	scale	effects	 for	users	and	operators	when	the	capacity	 is	optimised.	The	delay	curve	
(Figure	7a)	looks	almost	exactly	as	Figure	4,	meaning	that	all	the	scale	phenomena	discussed	above	
remain	valid.	Figure	6	implies	that	both	the	number	of	vehicles	and	VHT	still	exhibit	scale	economies	
when	the	capacity	is	optimised,	but	there	remains	one	aspect	to	be	analysed:	the	number	of	seats	𝑆,	
defined	as	the	product	of	the	number	of	vehicles	and	their	capacities.	Recall	that,	according	to	Eq.	
(10),	operators’	capital	and	operating	costs	depend	both	on	the	total	number	of	vehicles	and	on	𝑆.	
The	evolution	of	𝑆	when	the	capacity	 is	optimised	 is	shown	in	Figure	7b:	 it	 is	similar	 to	what	we	
observed	regarding	fleet	size	(first	erratic	and	then	scale	economies),	but	with	a	small	jump	when	
the	optimal	capacity	switches	from	2	to	3	(around	600	passengers/h	in	Figure	7b).	We	note	that	in	
real-life	implementations,	the	fleet	might	not	be	homogeneous,	i.e.,	it	is	possible	to	have	vehicles	of	
different	sizes,	which	would	decrease	the	size	of	 these	 jumps	as	the	average	𝐾	would	approach	a	
continuous	function;	however,	optimally	routing	and	operating	a	heterogenous	fleet	is	quite	complex,	
let	alone	designing	it,	so	this	is	beyond	the	scope	of	this	paper.	
	

	
a)	

					 	
b)																																																																																																														c)		

Figure	8.	Average	(a)	total	costs,	(b)	operator	costs	and	(c)	users	cost	per	passenger		in	the	circular	
model	with	endogenous	time	windows,	as	the	number	of	hourly	passengers	grows,	when	the	optimal	capacity	
is	selected.	Different	curves	represent	different	types	of	vehicles	and	whether	walks	are	enabled	in	ODRP.	
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In	Figure	8,	we	synthesise	the	results	by	depicting	average	total	costs,	and	also	average	users	and	
operators	costs.	We	further	include	two	alternative	scenarios:	forbidding	walks	(i.e.,	providing	door-
to-door	service),	and	utilising	human-driven	vehicles	instead	of	AVs,	which	diminishes	capital	costs	
but	includes	the	drivers’	wages.	Figure	8a	shows	the	average	cost	per	user:	in	all	three	scenarios,	we	
observe	the	same	situation,	namely,	no	clear	trends	for	very	low	demands	and	economies	of	scale	
after	a	certain	demand	threshold	is	reached.	This	implies	that	the	sources	of	diseconomies	of	scale		
that	we	identified	for	the	users	get	outweighed	by	the	sources	of	economies	of	scale	for	the	operators,	
leading	to	a	global	situation	of	 	economies	of	scale	that	eventually	get	exhausted.	Note	 that	
having	 overall	 economies	 of	 scale	means	 that	 the	 sources	 of	 diseconomies	 of	 scale	 (crucially	 the	
Extra-detour	Effect)	can	be	compensated	through	pricing.	Some	relevant	 insights	can	be	obtained	
from	the	comparison	between	the	different	scenarios	and	vehicle	technologies:	
	

● Using	AVs	reduces	the	total	cost	to	a	considerable	extent.	This	fits	intuition,	as	having	drivers	
for	each	small	vehicle	can	increase	total	costs	significantly	(Bösch	et	al.,	2018).		

● In	general,	operator	costs	(Fig.	8b)	are	larger	than	user	costs	(Fig	8.c)	and	the	shape	of	the	
total	 cost	 curves	 is	mostly	driven	by	 the	 shape	of	 the	operator	 cost	 curves.	 In	Figure	8.c,	
sharing	 a	 vehicle	 significantly	 increases	 users’	 cost	 due	 to	 extra	 waiting,	 walking	 (when	
admitted),	 and	detours.	Users	would	prefer	not	 to	walk,	but	because	walks	are	 short,	 the	
advantage	 of	 a	 door-to-door	 service	 is	 much	 smaller	 than	 what	 is	 gained	 in	 terms	 of	
operators’	costs	when	walks	are	admitted.	

● When	the	number	of	users	is	large,	enabling	walks	can	be	as	important	as	changing	the	vehicle	
technology:	both	non-solid	curves	exhibit	similar	values	of	average	total	cost	in	Figure	8.	In	
fact,	an	ODRP	system	with	human-driven	vehicles	 that	enables	walking	has	a	 lower	
total	 cost	 than	a	 system	with	AVs	without	walks,	 	 for	 some	demand	 levels.	 This	 is	 a	
remarkable	finding	regarding	the	value	of	designing	an	ODRP	system	with	short	walks.	

● On	the	other	hand,	as	there	 is	 little	walking	when	the	number	of	users	is	 low	(the	system	
works	similar	to	a	private	door-to-door	service),	for	demands	below	250	passengers/h	the	
corresponding	impact	of	enabling	walks	is	negligible.	

● The	curve	in	which	walking	is	not	allowed	exhibits	returns	that	are	almost	constant	to	scale	
(similar	to	the	findings	by	Militão	&	Tirachini,	2021).	Therefore,	admitting	walks	happens	
to	be	crucial	to	trigger	scale	effects.	

4.3.2	Time	windows	adapted	endogenously	to	demand	-	Feeder	model	
There	is	an	emerging	research	trend	that	studies	the	potential	of		ODRP	services	to	help	solve	the	so-
called	“last-mile	problem”,	i.e.,	as	a	feeder	that	connects	the	main	public	transport	stations	with	the	
specific	origins	(or	destinations)	of	the	users	(e.g.,	Bürstlein	et	al.,	2021,	Chen	et	al.,	2020,	Fielbaum,	
2020,	Kim	&	Schonfeld,	2014,	Leffler	et	al.,	2021,	Ma	et	al.,	2019,	Wen	et	al.,	2018).	For	 the	ODRP	
system,	the	main	difference	with	respect	to	the	circular	model	is	that	everybody	shares	one	extreme	
of	the	trip,	which	means	that	this	model	can	also	represent	the	case	in	which	there	is	a	very	attractive	
destination,	such	as	the	city	centre.	In	our	simulations,	all	users	are	travelling	to	the	same	destination	
(for	instance,	to	take	a	second	vehicle	that	does	not	affect	the	ODRP	operation).	Therefore,	compatible	
routes	are	much	easier	to	find.	The	only	requirement	is	that	when	a	vehicle	is	following	a	route,	new	
passengers	have	to	be	located	close	to	that	route.	This	demand	pattern	has	a	significant	effect	in	the	
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simulations:	for	the	same	number	of	users,	the	number	of	feasible	trips	is	multiplied	by	about	twenty	
compared	to	the	circular	model.	This	increases	the	computational	burden	significantly,	which	is	why	
here	we	simulate	only	up	to	capacities	equal	to	four.		
	
There	 is	 yet	 another	 relevant	 difference	 related	 to	 idle	 capacity.	 As	 users	move	 all	 in	 the	 same	
direction,	and	the	network	is	no	longer	circular,	the	vehicles	must	actively	return	in	order	to	find	
some	new	passengers.	Recall	that	this	is	executed	through	a	rebalancing	step:	idle	vehicles	are	sent	
towards	 the	other	extreme	of	 the	network,	but	 they	might	not	arrive	 there	because	 they	are	still	
considered	available	for	the	emerging	users.		
	
The	results	of	the	simulation	are	depicted	in	Figure	9,	considering	the	base	model	(AVs	and	enabling	
walks).	Figure	9a	condenses	the	information	regarding	users’	costs	by	displaying	the	average	delay,	
which	shows	the	same	trends	as	observed	in	the	circular	model,	verifying	the	presence	of	the	three	
sources	of	scale	economies	discussed	above.	Figure	9b	shows	the	average	number	of	passengers	per	
vehicle	 (excluding	 vehicles	 being	 rebalanced),	 confirming	 that	 vehicles	 start	 to	 increase	 their	
occupancy	rate	when	some	threshold	in	the	number	of	passengers	is	exceeded.	Moreover,	the	usage	
of	the	vehicles	is	much	higher	than	in	the	circular	model.	When	looking	into	total	costs	(Figure	9c),	
the	same	conclusions	obtained	for	the	circular	model	remain	valid:	average	costs	do	not	show	a	clear	
trend	at	the	beginning,	and	scale	economies	prevail	afterwards	until	they	eventually	get	exhausted.	
	
	

	
	 	 a)	 	 	 	 b)	 	 	 	 	 c)	
Figure	9.	Average	delay	(a),	active	vehicle’s	load	at	the	end	of	the	operation	(b)	and	costs	(c),		faced	by	the	
users	of	the	ODRP	system	in	the	feeder	model	with	endogenous	time	windows,	as	the	number	of	hourly	

passengers	grows.	Different	curves	represent	different	vehicles’	sizes.	

4.3.3	Fixed	time	windows	-	Circular	model	
We	 now	 show	 the	 results	 when	 the	 bounds	 on	 the	 service	 times	𝛺" , Ω# , Ω!	 are	 exogenous	 and	
independent	of	 the	demand	 level.	This	 case	 requires	 very	 long	 computational	 times,	 as	 the	high-
demand	scenarios	do	not	have	short	time	windows,	which	leads	to	combinatorial	problems	of	large	
size.	This	is	why	we	only	present	results	from	the	circular	model	and	consider	vehicles	with	capacity	
2	and	3.		
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a)	 	 	 	 b)	 	 	 	 	 c)	

Figure	10.	a)	Average	total	delay	faced	by	the	users,	b)	Average	load	per	vehicle	at	the	end	of	the	simulation,	
and	c)	Average	costs,	in	the	ODRP	system	for	the	circular	model	with	exogenous	time	windows,	as	the	

number	of	hourly	passengers	grows.	Different	curves	represent	different	vehicles’	sizes.	
	
Results	are	shown	in	Figure	10,	and	reinforce	the	conclusions	previously	discussed.	Figure	10b	is	
very	 illustrative,	 as	 it	 shows	 that	 for	very	 low	demand	 (lower	 than	30	passengers/h)	 there	 is	no	
sharing	at	all	(at	the	end	of	the	simulations),	so	that	the	only	relevant	scale	source	is	the	Mohring	
Effect	and	average	delay	(Figure	10a)	decreases.	When	the	average	occupancy	rate	begins	to	increase	
(Figure	10b),	the	same	happens	with	the	average	delay,	triggered	by	the	Extra-detour	Effect.	For	a	
demand	larger	than	100	passengers/hour,	the	average	delay	starts	to	decrease	again	,	coinciding	with	
the	threshold	after	which	the	average	load	increases	at	a	lower	rate.	Figure	10c	shows	that	when	all	
costs	are	accounted	for,	scale	economies	prevail	and	eventually	get	exhausted.	

4.3.5	Fixed	time	windows	-	Manhattan	
We	now	show	the	outcome	of	simulating	one	hour	of	ODRP	operation	over	Manhattan,	considering	
subsets	of	increasing	size	extracted	from	a	real-life	database	of	taxi	travellers.	Results	are	depicted	
in	Figure	11,	and	show	that	 the	qualitative	sources	of	scale	 that	were	discussed	 in	Section	3,	and	
verified	numerically	in	ad-hoc	networks	in	the	previous	subsections,	remain	valid	under	this	real-life	
scenario.	 The	 delay	 (Figure	 11a)	 first	 decreases	 (Mohring	 effect),	 then	 increases	 (Extra-detour	
effect),	and	then	decreases	again	(Better-matching	effect).	The	threshold	where	the	trends	change	
coincides	with	the	changes	in	the	average	occupancy	rate	per	vehicle	(Figure	11b):	when	vehicles	
begin	to	be	shared,	the	delay	starts	to	increase,	and	when	the	sharing	rate	becomes	more	stable,	the	
delay	decreases.	Finally,	Figure	11c	shows	once	again	that	when	all	costs	are	taken	into	account,	scale	
economies	prevail	but	eventually	get	exhausted.	
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a)	 	 	 	 b)	 	 	 	 c)	

Figure	11.	a)	Average	total	delay	faced	by	the	users,	b)	Average	load	per	vehicle	at	the	end	of	the	simulation,	
and	c)	Average	costs,	in	the	ODRP	system	operated	in	Manhattan.	Different	curves	represent	different	

vehicles’	sizes.	
	

4.4	Evolution	and	predominance	of	the	three	user-related	scale	effects	
We	can	now	discuss	the	question	posed	at	the	end	of	Section	3:	which	of	the	user-related	scale	effects	
predominate	and	under	which	circumstances?	The	evolution	of	user-related	scale	phenomena	as	the	
number	of	users	increases	is	described	in	Figure	12.	It	is	a	stylized	schematic	figure	that	divides	the	
analysis	into	three	demand	ranges,	representing	the	respective	demand	segments	(as	seen	in	Figures	
6a,	9a,	10a,	and	11a)	in	which	the	average	delay	first	decreases,	then	increases,	and	then	steadily	
decreases	again.	Figure	12	shows	the	so-called	Degree	of	scale	economies	(DSE),	which	is	formally	
defined	for	any	production	function	as	the	ratio	of	the	average	cost	to	the		marginal	cost:	this	means	
that	there	is	a	threshold	in	DSE= 1	determining	whether	economies	or	diseconomies	of	scale	prevail.	
The	mentioned	three	sectors	are:	
	

● When	 the	 number	 of	 passengers	 is	 low	 (first	 segment	 of	 the	 curve,	 e.g.	 in	 the	 late-night	
period),	users	hardly	share	a	vehicle,	so	that	the	Extra-detour	and	the	Better-matching	Effects	
are	almost	non-existent.	This	means	that	the	Mohring	Effect	(which	is	more	prominent	when	
the	demand	is	low)	prevails,	and	there	are	economies	of	scale.	

● Eventually,	users	begin	to	share	the	vehicle,	and	the	system	enters	into	the	second	demand	
range.	 The	 Extra-detour	 Effect	 begins	 to	 operate,	 and	 diseconomies	 of	 scale	 prevail.	 The	
Mohring	 Effect	 is	 still	 present,	 but	 dominated.	 The	 Better-matching	 Effect	 also	 starts	 to	
operate	but	mildly	due	to	the	increased	passenger	occupancy	rate.	The	minimum	of	the	curve	
represents	the	point	at	which	vehicles’	load	increases	at	the	fastest	pace.	

● Finally,	when	 the	 vehicles	 cannot	 carry	more	passengers	 (they	 are	 full),	 the	Extra-detour	
Effect	disappears,	and	the	Mohring	Effect	has	little	impact.	The	Better-matching	Effect,	on	the	
other	hand,	is	fully	operative,	leading	to	DSE> 1.	Eventually,	DSE	converges	to	1	as	all	these	
sources	get	exhausted.	
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Figure	12.	Synthesis	of	the	three	sources	of	users-related	scale	effects	for	ODRP	systems.	The	y-axis	
represents	the	degree	of	scale	economies	(DSE),	so	that	scale	economies	prevail	when	DSE> 1and	the	

contrary	happens	when	DSE	< 1	(constant	returns	to	scale	if	DSE= 1);	the	x-axis	represents	the	number	of	
users,	and	we	do	not	include	concrete	numbers	because	this	is	a	schematic	representation.			The	direction	of	

each	arrow	represents	if	it	pushes	DSE	upwards	(i.e.,	scale	economies)	or	downwards	(i.e.,	scale	
diseconomies),	while	its	length	represents	its	magnitude.	 

4.5	Comparison	with	an	idealised	public	transport	model 
As	the	single-line	model	resembles	the	operation	of	a	traditional	public	transport	line,	it	is	natural	to	
analyse	 under	 which	 conditions	 ODRP	 could	 replace	 such	 a	 line.	 A	 precise	 model	 of	 the	 public	
transport	is	out	of	the	scope	of	this	paper;	however,	we	do	perform	a	comparison	with	an	idealised	
public	 transport	 line,	 whose	 frequency	 and	 bus	 capacity	 are	 optimised	 following	 a	 procedure	
described	in	Appendix	A.1.	Such	a	comparison	is	depicted	in	Figure	13,	and	is	informative	regarding	
the	trends	 in	the	respective	curves.	Figure	13	depicts	the	ratio	between	the	total	costs	(including	
operators	 and	users)	of	ODRP	and	public	 transport,	 considering	both	 the	 circular	 and	 the	 feeder	
models.	 In	 ODRP,	 we	 select	 the	 capacity	 of	 the	 vehicles	 that	 minimises	 total	 costs,	 considering	
endogenous	time	windows.	ODRP	is	in	the	numerator,	so	that	a	value	lower	than	1	implies	that	ODPR	
provides	the	lowest	total	cost.	The	most	relevant	conclusions	of	this	comparison	are	the	following:	
	

● ODRP	should	only	be	preferred	if	the	demand	is	very	low,	in	line	with	the	findings	of	previous	
research	efforts,	as	described	in	Section	2.	This	result	is	driven	by	the	small	size	of	the	ODRP	
vehicles,	and	relates	to	the	almost	door-to-door	scheme	that	results	in	such	scenarios.	This	
last	characteristic	also	explains	why	ODRP	is	more	competitive	in	the	circular	model	for	low	
levels	 of	 demand,	 as	 in	 the	 feeder	 model,	 public	 transport	 also	 has	 zero	 walking	 at	 the	
destination,	softening	the	benefits	of	ODRP.	

● For	large	demand	levels,	ODRP	is	more	competitive	in	the	feeder	model.	Note	that	in	public	
transport,	vehicles	also	need	to	“rebalance”,	i.e.,	to	return	empty	to	the	other	extreme	of	the	
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network.	In	this	case,	all	vehicles	have	to	arrive	there,	as	their	route	is	fixed8.	In	ODRP,	they	
do	not	need	to	arrive	at	that	extreme,	so	that	flexibility	plays	a	role	in	diminishing	the	idle	
capacity	of	the	system.	

● For	 large	demand	 levels,	curves	tend	to	stabilise,	which	 is	a	natural	result	of	 the	constant	
returns	to	scale	that	characterises	all	these	systems	in	such	scenarios.	

	
In	all,	if	one	has	to	choose	between	using	only	ODRP	(with	small	vehicles)	or	only	traditional	public	
transport,	the	former	should	be	chosen	only	for	low-demand	zones.	However,	our	results	regarding	
the	presence	of	scale	economies	when	the	demand	is	large,	suggest	that	other	types	of	integration	
could	yield	even	better	results,	utilising	both	systems	in	some	complementary	way	to	take	advantage	
of	the	good	quality	of	service	that	can	be	offered	to	the	users.	How	to	design	such	an	integrated	system	
is	a	broad	question	that	goes	beyond	the	scope	of	this	paper,	but	recognizing	that	there	might	be	
room	for	improving	public	transport	provision	in	high-demand	zones	by	means	of	smart	utilisation	
of	ODRP	systems	is	a	promising	venue	for	further	inquiry.	
	

	
Figure	13.	Comparison	between	ODRP	and	public	transport	average	costs	as	the	number	of	hourly	

passengers	grows,	when	the	optimal	capacity	is	selected,	using	AVs	and	enabling	walks.	Different	curves	
represent	the	circular	and	the	feeder	model.	

5.	Conclusions	and	future	research 
In	this	paper,	we	have	identified	and	analysed	the	sources	of		economies	and	diseconomies	of	scale	
in	 on-demand	 ridepooling	 (ODRP)	 systems.	 To	 do	 this,	 we	 have	 extended	 a	 state-of-the-art	
assignment	method	for	ODRP,	in	order	to	optimise	the	fleet	size	together	with	the	decisions	of	how	
to	group	the	users	and	which	vehicles	are	assigned	to	each	group	of	passengers.	
	
We	 have	 discussed	 three	 scale	 effects	 affecting	 users,	 implying	 both	 positive	 and	 negative	
externalities	to	the	other	passengers.	Positive	externalities	are	the	Mohring	effect,	i.e.,	a	reduction	of	
waiting	times	as	demand	grows,	and	the	“Better-matching	effect”,	i.e.,	the	reduction	of	access	times,	
waiting	times,	 travel	 times	and	operator	costs	 that	 it	 is	possible	because	more	efficient	groups	of	
passengers	can	be	formed	when	demand	grows.	The	negative	externalities	relate	to	increasing	the	

 
8 Both	problems	might	be	faced	with	ad-hoc	techniques	like	having	some	vehicles	serving	only	the	last	portion	of	the	line,	
i.e.,	a	“short-turning”	strategy,	potentially	combined	with	deadheading,	as	studied	by	Cortés	et	al.	(2011). 
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number	of	users	per	vehicle,	which	induces	longer	detours,	a	phenomenon	we	call	the	“Extra-detour	
Effect”.	There	are	only	positive	externalities	on	the	operators’	side,	namely	that	vehicles	can	be	used	
more	intensely	so	that	the	fleet	size	grows	less	than	linearly	as	a	function	of	demand.		
	
Such	 effects	 have	 been	 theoretically	 discussed	 and	 verified	 in	 simulations,	which	 have	 been	 run	
considering	several	different	scenarios,	including	two	simplified	single-line	configurations	(in	which	
ODRP	is	assumed	to	operate	in	the	equivalent	of	a	zone	covered	by	a	public	transport	line)	and	one	
real-world	 network	 from	 Manhattan,	 New	 York.	 Results	 are	 remarkably	 similar	 across	 all	 the	
scenarios	analysed.	The	simulations	have	enabled	determining	which	of	these	scale	effects	prevail	as	
the	number	of	passengers	 increases.	First,	 for	 low	demand	 levels,	 there	 is	 little	sharing	and	scale	
economies	prevail	thanks	to	the	Mohring	effect.	Then,	as	total	demand	grows,	users	start	to	share	
rides	and	the	Extra-detour	effect	dominates,	leading	to	a	global	situation	of	diseconomies	of	scale	for	
users.	Finally,	if	demand	increases	even	further,	vehicles	run	at	capacity	and	again	positive	effects	
prevail	thanks	to	the	Better-matching	effect.		
	
We	have	found	that	for	the	efficient	operation	of	ODRP	in	a	setting	without	request	rejections,	the	
possibility	of	asking	the	passengers	to	perform	short	walks	to	pick-up	points	is	crucial	to	keep	total	
costs	 low,	both	 for	users	and	operators.	 	 In	particular,	we	have	 found	 that	an	ODRP	system	with	
human-driven	vehicles	and	walks	allowed	has	a	total	cost	at	a	similar	level	to	that	of	a	door-to-door	
ODRP	 system	 with	 automated	 (fully	 driverless	 case)	 vehicles.	 This	 finding	 has	 significant	
implications	 for	 the	 current	 and	 future	design	of	mobility	 systems	based	on	 shared	 vehicles	 and	
shared	rides,	either	with	human-driven	or	automated	vehicles.			
	
If	the	system	designer	has	to	choose	between	a	traditional	public	transport	line	or	an	ODRP	system,	
the	 latter	 should	be	mostly	preferred	 for	 low-demand	zones.	However,	 the	 scale	 effects	 in	ODRP	
suggest	that	there	could	be	other	ways	of	integrating	both	systems	to	enhance	public	transport	and	
attract	 users	 from	 private	 modes	 in	 high-demand	 scenarios,	 especially	 for	 feeder-like	 systems.	
Understanding	how	this	could	be	done	is	the	most	relevant	future	research	question	that	emerges	
from	this	paper.		
	
Our	 findings	 might	 be	 limited	 by	 the	 assignment	 method	 we	 utilise.	 However,	 even	 if	 another	
numerical	setup	may	change	the	average	costs	estimated,	we	have	qualitatively	argued	that	(i)	the	
three	scale	effects	under	scrutiny	do	exist	in	ODRP	systems	in	general	(including	references	to	other	
studies	when	appropriate),	(ii)	they	interact	with	each	other	and	(iii)	the	influence	of	each	other	in	
pushing	average	costs	up	or	down	depends	on	the	total	demand	level.			
	
As	extensions	to	the	current	approach,	 including	some	market-related	effects	is	a	promising	path.	
Considering	that	the	fleet	is	owned	by	one	or	more	for-profit	shared-mobility	companies	might	have	
an	influence	on	scale	analysis	that	is	worth	studying.	Similarly,	it	is	worthwhile	to	consider	the	case	
where	 the	 supply	 is	 not	 centrally	 controlled,	 i.e.	 drivers	 can	 choose	when	 to	 connect	 and	which	
passengers	 to	 accept.	 Finally,	 users’	 strategic	 responses	 to	 different	 pricing	 policies	 can	 have	 a	
relevant	 effect	 on	 the	 degree	 of	 sharing	 and	 therefore	 on	 the	 Extra-detour	 and	 Better-matching	
effects.	
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Appendix	

A.1	Public	transport	model	
In	order	to	compare	the	performance	of	the	ODRP	and	the	public	transport	systems,	we	now	describe	
the	 public	 transport	model	we	 assume,	 following	 the	 classical	model	 by	 Jansson	 (1980)	 and	 the	
posterior	 adaptations	 by	 Jara-Díaz	&	 Gschwender	 (2009).	We	will	 describe	 in	 detail	 the	 circular	
model	only,	as	the	feeder	one	can	be	derived	directly.	Let	us	begin	introducing	some	notation:	𝑇	refers	
to	the	time	required	by	a	bus	to	tour	the	whole	circuit,	i.e.	
	
𝑇 = E⋅#⋅G

!1
	 	 	 	 	 	 	 	 	 	 	 (A1)	

	
Where	𝐿	stands	for	the	length	of	each	arc.	We	assume	that	each	user	requires	an	average	time	𝑡	to	
board	and	alight	the	bus.	Denoting	by	𝑓	the	line	frequency	(to	be	optimised)	and	by	𝑌	the	number	of	
passengers	per	time	unit,	then	the	bus	cycle	time	is:	
	
𝑡H = 𝑇 + (+

D
	 	 	 	 	 	 	 	 	 	 	 (A2)	

	
To	use	Eq.	(A2)	to	express	the	operators’	costs,	we	use	Eq.	(10),	i.e.,	assume	that	both	operational	and	
capital	 costs	 grow	 linearly	with	 the	 bus	 capacity	𝐾.	 As	 the	 operating	 time	 is	 fixed	 in	 the	 public	
transport	case	(buses	are	operating	all	the	time),	this	means	that	each	bus	cost	can	be	expressed	as	
𝑐B + 𝑐C𝐾,	with	𝑐1 = 𝑐AB + 𝐸𝑐$B, 𝑐2 = 𝑐AC + 𝐸𝑐$C,	where	𝐸	is	the	total	operation	time.	Operators’	costs	
can	then	be	written	as:	
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𝑓(𝑇 + 𝑡𝑌/𝑓)(𝑐B + 𝑐C𝐾)	 	 	 	 	 	 	 	 	 (A3)	
	
Users’	costs	are	a	weighted	average	of	waiting,	walking,	and	in-vehicle	times,	through	the	respective	
parameters	 𝑝" , 𝑝# ,	 and	 𝑝! .	 Therefore,	 the	 public	 transport	 costs	 are	 calculated	 by	 solving	 the	
following	optimization	problem:	
	
𝑚𝑖𝑛
I,D

	𝑓(𝑇 + 𝑡𝑌/𝑓)(𝑐1 + 𝑐2𝐾) + 𝑌(𝑝"𝑡" + 𝑝#𝑡# + 𝑝!𝑡!)		 	 	 	 	 (A4)	

s.t.	𝐾 ≥ (
D
𝑌	 	 	 	 	 	 	 	 	 	 	 (A5)	

	
Eq.	 (A4)	 represents	 the	 sum	 of	 operators’	 and	 users’	 costs.	We	 assume	 homogeneous	 headway,	
vehicles	do	not	run	full	(passengers	can	board	the	first	vehicle	that	arrives)	and	random	user	arrivals	
at	constant	rates,	which	imply	that	the	average	waiting	time	is	𝑡" = 1/2𝑓.	Average	in-vehicle	time	𝑡!	
can	be	calculated	as	we	know	the	average	distance	traveled	by	the	users;	it	includes	running	time	
plus	 time	 spent	 at	 stops	where	 	 other	 users	 board	 and	 alight.	 Average	walking	 distance	 can	 be	
computed	directly	when	the	random	demand	is	created,	by	calculating	the	distances	between	the	real	
origins	and	the	bus	stations	of	the	respective	zones,	and	doing	the	same	for	the	destinations.	Dividing	
such	distances	by	the	walking	speed	𝑣#	results	in	the	average	walking	time	𝑡# .	Eq.	(A5)	ensures	that	
all	users	will	fit	on	the	bus.	As	the	objective	function	in	Eq.	(A5)	increases	with	𝐾,	this	constraint	will	
always	be	active.	Factor	𝛼	represents	the	ratio	between	the	most	loaded	and	the	average	arc,	which	
can	also	be	computed	directly	once	the	random	demand	is	known. 

A.2	Glossary	and	numerical	value	of	the	parameters	

Symbol	 Meaning	 Value	

𝛿	 Time	elapsed	between	two	consecutive	assignments	in	ODRP.	 1	[min]	

𝜏	 Time	spent	by	the	ODRP	vehicle	at	each	stop.	 10.5	[sec]	

𝑎	 Number	of	longitudinal	streets	in	a	zone.	 5	

𝑏	 Number	of	transversal	streets	in	a	zone.	 7	

𝑣%	 Vehicles’	speed	in	fast	streets.	 25	[km/h]	

𝑣&	 Vehicles’	speed	in	low	streets.	 12.5	[km/h]	

𝑍	 Number	of	zones	 45	

𝛾	 Level	of	dispersion	of	the	origins	and	destinations	within	a	zone.	 0.2	

𝑙	 Average	number	of	zones	toured	by	the	users	in	the	circular	model.	 10	

𝜎&	 Variance	of	the	number	of	zones	toured	by	the	users	in	the	circular	model.	 4	

𝐿	 Arcs’	length.	 50	[m]	

𝑡	 Time	required	to	board	and	alight	a	public	transport	vehicle.	 5	[sec]	
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𝐸	 Total	operation	time	 10	[h]	

𝑐'%	 Fixed	operating	cost	per	vehicle.	 1.13	[US$/h]	

𝑐'&	 Capacity-dependant	operating	cost	per	vehicle.	 0.074	[US$/h-seat]	

𝑐(%	 Fixed	capital	cost	per	vehicle	(AV/Human-Driven).	 24.6/78.1	[US$]	

𝑐(&	 Capacity-dependant	capital	cost	per	vehicle	(AV/Human-Driven).	 2.1/1.2	[US$/seat]	

𝑣)	 Walking	speed.	 5	[km/h]	

𝑝*	 Monetary	equivalent	cost	of	one	time	unit	spent	by	a	user	in-vehicle.	 2.32	[US$/h]	

𝑝)	 Monetary	equivalent	cost	of	one	time	unit	spent	by	a	user	waiting.	 4.64	[US$/h]	

𝑝+	 Monetary	equivalent	cost	of	one	time	unit	spent	by	a	user	walking.	 4.64	[US$/h]	

Table	A1:	Glossary	of	the	parameters	used	throughout	the	paper.	Stopping	time	𝜏	is	computed	following	
Roess	et	al.	(2004).	Operators’	cost	parameters	𝑐!1, 𝑐!2, 𝑐"1, 𝑐"2	for	human-driven	and	automated	vehicles	are	
calculated	for	Santiago,	Chile,	based	on	Tirachini	&	Antoniou	(2020).	Time	required	to	board	and	alight	the	

vehicles	𝑡	is	taken	from	Jara-Díaz	et	al.	(2017).	Walking	speed	𝑣",	as	well	as	users’	costs	parameters	
𝑝# , 𝑝$, 𝑝%	are	obtained	from	Fielbaum	et	al.	(2021).	The	rest	of	the	parameters	are	ours.	


