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Abstract

We analyse the sources of economies and diseconomies of scale in On-Demand Ridepooling (ODRP),
disentangling three effects: when demand grows, average costs are reduced due to i) a larger fleet
that diminishes waiting and walking times (Mohring Effect), and ii) matching users with more similar
routes (Better-matching Effect). A counter-balance force (Extra-detour Effect), occurs when iii) the
number of passengers per vehicle increases and users face longer detours. At low demand levels,
there is little sharing and the Mohring effect prevails; as demand grows, more passengers per vehicle
push for the Extra-detour Effect to dominate; eventually, vehicles run at capacity, and the Better-
matching Effect prevails. The last two effects are specific to ODRP as the routes are not fixed but
adapted online. Our simulations show that considering both users’ and operators’ costs, scale
economies prevail, and that ODRP with human-driven vehicles and walks allowed has total costs
similar to door-to-door systems with driverless vehicles.
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1. Introduction

1.1 On-demand ridepooling systems: Potential and challenges

Transport systems are facing profound transformations worldwide thanks to the ability to connect
vehicles and large numbers of passengers on demand. After almost ten years since their arrival,
several studies have shown that transportation network companies (TNCs) based on un-shared rides
(also called ride-hailing or ridesourcing) have increased traffic and congestion (Diao et al.,, 2021,



Henao & Marshall, 2019, Roy et al., 2020, Tirachini & Gomez-Lobo, 2020, Ward et al., 2021, Wu &
MacKenzie, 2021). This situation has fostered the study and implementation of on-demand
ridepooling (ODRP) services, in which different users simultaneously share a vehicle when their
routes are compatible, so that congestion and emissions might be reduced (Li et al.,, 2021, Tikoudis
et al, 2021), depending on modal substitution.

ODRP systems have the potential to lower congestion because they might reduce the required fleet
significantly when compared to the non-pooled versions, as shown by several previous studies
(Alonso-Mora et al,, 2017, Fagnant & Kockelman, 2018, Santi et al.,, 2014). However, these analyses
are based on comparing the number of vehicles needed to serve a fixed demand level, which might
be a strong assumption as both types of service do not necessarily attract the same number of users.
In fact, recent studies suggest that the ability of ODRP to reduce congestion depends on reaching
some advantageous scenarios (Ke et al., 2020, Tirachini et al., 2020). Such scenarios should combine
an efficient fleet operation with an ability to attract a significant number of passengers from private
cars. To reach those scenarios, some strategic decisions arise, such as whether it is efficient to use
ODRP in low-demand or high-demand markets, or if it should replace and/or complement a public
transport service over a network.

These strategic questions require a deeper understanding of the user and operator cost structure of
ODRP systems, in particular, of the mechanisms that introduce economies or diseconomies of scale.
However, this is not an easy task, as the operation of ODRP depends on specific algorithms to face the
complexity of operating on demand and with a large number of feasible ways to match users and
vehicles. Which algorithm to utilise may yield different strategic results and affect scale effects. For
instance, a seminal study by Li & Quadrifoglio (2010) studies a last-mile service that dispatches
vehicles sequentially as soon as they get enough users regardless of their destinations. When doing
so, a potential source of scale economies is not leveraged, namely that a greater demand enables
grouping together users with closer destinations without increasing waiting times significantly. This
is the type of issue that we address in this paper.

1.2 Overview, contributions, and structure of the paper

In this paper, we extend a state-of-the-art assignment model to perform a detailed economic analysis
of ODRP systems. In particular, we uncover three sources of economies and diseconomies of scale
that are present simultaneously when operating ODRP, with the objective to determine the efficiency
of ODRP as a shared-mobility platform for urban operations.

To do so, we consider a real-life network in Manhattan, New York, and also an extended version of
the so-called single-line model (borrowed from public transport), in order to study sources of
economies and diseconomies of scale when operating ODRP. The traditional single-line model has
been extensively used by researchers across decades to analyse structural aspects of mass public
transport design. The model is useful to study the impact of the demand levels, values of time,
operator costs and other parameters over the mobility system under scrutiny, simplifying its spatial
distribution. By this means, the demand can be represented by a single variable (or a few variables),



usually in passengers per hour, which makes this model quite precise for scale analysis (e.g.,
Fielbaum et al., 2020a, Tirachini & Antoniou, 2020).

The single-line model is useful for scale analysis, but has a relevant limitation when studying on-
demand systems: the on-demand nature entails that vehicles’ routes should not be defined a priori
but adapted to the emerging users. Such a feature cannot be captured in a single-line model in which
there is only one possible route. This limitation might influence scale analysis, as one aspect to study
is the evolution of the routes with scale (in fact, Manik & Molkenthin, 2020, show that a linear
network artificially favours the performance of ODRP over several alternative topologies). We
address this limitation by including simulations using a real-life dataset from Manhattan, and by
extending the single-line model, so that we keep most of its simplifying aspects, but yet enabling
different routes to be followed depending on the passengers. In simple terms, we deploy a grid
surrounding the single-line, so that the vehicles move within the grid depending on the specific users
they are serving.

In our setting, we have another challenge that arises when analysing scale for on-demand systems:
which fleet to use. Most models that simulate ODRP assume a given fleet (as we describe further in
Section 2.1). However, a proper scale analysis requires that the fleet is endogenously computed,
which is troublesome in ODRP as even with a fixed fleet the mathematical problems present great
complexity. Here we propose a method to compute the fleet together with the assignment decisions,
so that the number of vehicles responds to the demand.

We are interested in the potential of ODRP to face some of the most relevant challenges faced by
urban transport, such as emissions and congestion externalities, so the system we study follows rules
that resemble public transport operations. It is non-profit, and the costs of all agents (users and
operators) are considered when deciding how to assign vehicles to users. The number of vehicles and
their routes are decided by a central controller aiming to minimise a function that represents total
costs, where we impose that all users must be served. Moreover, we do not impose a door-to-door
service, i.e.,, the system might decide (on-demand) pick-up and drop-off points that require some
short walks, if doing so improves the system’s overall performance. That walking time has a valuation
for the user that is different from the valuation of in-vehicle time.

Our main contribution is to theoretically disentangle and discuss in depth three sources of economies
and diseconomies of scale in ODRP systems, which are then verified through numerical simulations
under several different scenarios. These scale effects illustrate the potential and obstacles that need
to be overcome for ODRP to succeed (for instance, Bahrami et al. 2022 show that the profitability of
ODRP depends on the presence of scale economies when matching different users). Some of these
sources of economies and diseconomies of scale are specific to ODRP systems, as they depend on how
the flexible routes followed by the vehicles evolve when the number of passengers grows.
Furthermore, we propose a way to compute the fleet size in ODRP together with the assignment
decisions, which can be utilised for other types of analysis beyond the objectives of this paper. We
also show the potential of relaxing the door-to-door scheme when all requests must be served, and
compare our results with an idealised public transport system.



As discussed exhaustively in Section 3, there are studies that identify some of the scale effects of
ODRP analysed in the present research (Daganzo et al., 2020, Kaddoura & Schlenther, 2021, Ke et al,,
2020, Lehe et al., 2021, Militdo & Tirachini, 2021, Zhang & Nie, 2021), although most of these works
focus on a single effect. Compared to this body of research, our first contribution is the setting of a
single framework that allows us to identify and combine the three sources of economies and
diseconomies of scale previously mentioned, in an integrated fashion that reveals which of them
dominates as the demand grows. Second, in our model the fleet is endogenously adjusted to the
increasing demand levels, which can be compared to previous research efforts that usually assumed
a fleet size exogenously given. Third, in the application of the model, we compare alternative
deployment scenarios in order to address important policy and service design questions, such as
what the efficiency gains of allowing walks to pick-up and from drop-off points are, compared to
door-to-door operation systems (for both human-driven and driverless vehicles), and what are the
implications of alternative operation rules in the cost comparison between ODRP and fixed-route
public transport.

The paper is organised as follows. Section 2 revises relevant previous studies. Section 3 describes
qualitatively and formalises which are the most relevant novel sources of scale economies and
diseconomies that emerge for a transport system that is both on-demand and shared. Section 4 shows
the numerical simulations, for which we first explain the methodological challenges and how we face
them. Finally, Section 5 concludes and proposes some directions for future research.

2. Related works

2.1 Fleet sizing in on-demand ridepooling systems

Deciding the fleet size to be used in an ODRP system is not an easy task. Contrary to public transport,
the routes cannot be known in advance, so the usual techniques dealing with cycle times and desired
frequencies (see Jara-Diaz & Gschwender, 2003 for a survey on this topic) cannot be applied here.
Furthermore, the ideas that have been used for non-shared on-demand systems, where the crucial
question is how to chain consecutive trips (such as Vazifeh et al, 2018), are also not applicable in this
context, because here the trips of different users overlap. Such difficulties have been faced with
different approaches that we now describe.

The most usual approach in the operations research literature is to work with fleets of fixed size. In
order to determine which fleet size is optimal, or at least gain some intuition about this issue, it is
common to repeat the same numerical experiments with different fleet sizes, to analyse which size
adjusts more efficiently to a given demand level, by comparing some metrics on, e.g., operating costs,
share of unserved demand, waiting time and travel time (Alonso-Mora et al., 2017, Levin et al., 2017,
Lokhandwala & Cai, 2018, Wang et al., 2018). Other studies seek the minimal fleet able to meet some
exogenous conditions on the quality of service. For instance, Daganzo & Ouyang (2019) and Martinez
& Viegas (2017) require to serve all the demand, although the latter also compare to the results
obtained with larger fleets. Spieser etal. (2014) consider bounds on the number of passengers



waiting to be served, and Fagnant & Kockelman (2018) aim at fulfilling some predefined waiting
times.

Alternative rules to analyse fleet size in ODRP include the proposals of Santos & Xavier (2015), who
assume that the number of vehicles has to be proportional to the number of requests, a rule that is
obtained as a result by Kang & Levin (2021) when following an assignment policy that aims at
maximising the number of users per vehicle; Pinto et al. (2020), who consider an available budget,
shared with public transport, that has to be respected; and Fielbaum (2020), who makes a weighted
optimization between users’ and operators’ costs under simplifying assumptions that lead to the
prediction of exact fleet sizes. Cap & Alonso-Mora (2018) explain that the optimal fleet size also
considers both types of costs and study the corresponding multi-objective problem, proposing a
method to compute the Pareto front.

2.2 The single-line model and other simplified networks for the analysis of
transport systems

The single line model has been used to identify scale effects in public transport. The stream of studies
based on the single-line model was pioneered by Mohring (1972), who identified one of the main
sources of scale economies in public transport (now known as the “Mohring Effect”): more
passengers require more buses, which increases the service frequency and diminishes waiting times
for everybody. His model was later extended by Jansson (1980) to consider optimal bus capacities
and time at stops, where a source of diseconomies of scale emerges, namely that an increase in the
number of users yields the utilisation of larger buses, making users to spend more time waiting for
other passengers to board and alight (an effect that can be compensated by changing the number of
doors per vehicle, as analysed by Jara-Diaz and Tirachini 2013). Evans & Morrison (1997) discovered
yet another source of scale economies with an extension of this model: an increase in the number of
users enables spending more resources in preventing accidents and disruptions in the service.
Finally, the inclusion of a crowding externality as increasing the value of in-vehicle time savings for
public transport users has been shown to increase average costs (and therefore introduce
diseconomies of scale) for large demand levels in a single-route model (Tirachini etal., 2010a),
however, when the number of routes can be optimally decided to minimise total costs, route density
is increased to reduce crowding and keep total costs down even for large demand levels (Tirachini
et al,, 2010b). Most of these effects have been shown to remain valid for single lines when a network
is considered (Fielbaum et al., 2020a).

Similar analyses have also been conducted in other networks, although finding a suitable simplified
representation is already a complex task (see Fielbaum et al., 2017, for an exhaustive discussion on
this issue). In the context of ODRP, Pimenta et al. (2017) has utilised a single-line model to discuss
how to operate the system in a reliable way; Badia & Jenelius (2021) and Chen & Nie (2017) consider
simplified grids to study how to connect ODRP with mass public transport, a problem that is studied
over an homogeneous circle by Fielbaum (2020); while Manik & Molkenthin (2020) compare
different simplified topologies to analyse which of them are better served through ODRP.



2.3 Comparing ridepooling and public transport

Previous studies have compared whether it is more efficient to utilise ODRP instead of fixed-route
public transport services in a given area; the usual result is that ODRP is more convenient only for
low-demand services. , as well as Papanikolaou & Basbas (2020), have rested on specific functional
forms that approximate the operation of ODRP systems, finding that ODRP should be preferred not
only when the demand is low but also when the areas to be served are small and trips are short.
Quadrifoglio & Li (2009) and Li & Quadrifoglio (2010) use continuous approximation models and
identify the discomfort of walking as another relevant parameter that determines which type of
system should be preferred. Similarly, Calabro et al. (2021) use microsimulation to find that flexible
services are better in rural areas. On the contrary, Bischoff et al. (2019) suggest that public transport
could be fully replaced by ODRP in small or medium cities, while Viergutz & Schmidt (2019) conclude
that rural areas should use line-based on-demand services rather than completely flexible routes.

It should be noted that all these models assume that the flexible systems provide door-to-door service
(or station-to-door, when it is solving the last-mile problem), which is a common assumption as most
real-life on-demand systems operate in that way. However, operating door-to-door is not mandatory
for this type of system. Actually, previous research has consistently shown that requesting some
users to walk either to personalised pick-up and drop-off points (Fielbaum, 2021, Fielbaum et al.,
2021, Lotze et al., 2022, Wang et al,, 2022) or to group meeting points (Bischoff et al., 2019, Li et al,,
2016, Li etal., 2018, Stiglic etal., 2015) can enhance ODRP services significantly. Such ideas are
already applied in real life: for instance the shared-mobility platform Jetty in Mexico City asks
passengers to be at specific pick-up points to be able to board a shared car or van; and users can
monitor the location of the vehicle in real-time before boarding (Tirachini et al., 2020).

3. Sources of scale economies in ODRP

3.1 Definition of an ODRP cost function

The problem of operating an ODRP system is defined by an urban environment (usually a network
represented by a directed graph), a fleet of vehicles V, and a demand consisting of a set of requests
r € R. Each request is characterised by its origin, destination and the time in which the request was
placed. Crucially, the demand is not known beforehand; instead, the system can only take a request
into account when it emerges, i.e., the time in which the request was placed. A solution to this problem
is defined by a route 1, for each vehicle v, that serves a set of requests R, in such a way that the
capacity of the vehicle is never exceeded, and without violating other constraints that could be
defined by the operator or service manager (such as hard restrictions on total waiting and travel
times).

This general problem can be formulated in many different ways. In computational complexity theory,
the ODRP problem combines two well-known NP-Hard problems, namely Dynamical-Vehicle-
Routing-Problem and Dial-A-Ride (Yu & Shen, 2020). Therefore, in the past years, several methods
and heuristics have been proposed to operate ODRP systems and determine how to decide routes



and assign trip requests to vehicles. When solving the problem, researchers usually follow a batch-
based approach, in which emerging requests are accumulated during some lapse of time before
deciding how to assign them all together (e.g., Alonso-Mora et al., 2017, Simonetto et al., 2019, Tsao
etal, 2019), or an event-based approach , where each request is assigned as soon as it appears
(Fagnant & Kockelman, 2018, Militdo & Tirachini, 2021, van Engelen et al., 2018). When deciding
routes and assignments, all of these techniques consider some objective function, i.e., there is an
implicit or explicit cost function that the model tries to minimise.

What is the economic meaning of the cost function in the transport context? As discussed by Jara-
Diaz (2007), the product in transport systems is defined by the demand being transported, and the
problem is how to serve it optimally, i.e, how to define the fleet composition, routes, and
assignments, to minimise a certain cost function. Which elements should be accounted for when
defining the ODRP cost function? First, we should note that the standard production approach to
scale economies that is found in other markets (i.e., how do average production costs evolve when
exogenous output increases) is incomplete to analyse passenger transport systems as ODRP. In the
public transport literature, such realisation came in the 70s, with the pioneering works of Mohring
(1972), Turvey & Mohring (1975), and Jansson (1979), who were among the first to argue that all
users’ time costs and efforts should be treated as costs on a par with operators’ costs, when analysing
the optimal design and pricing of public transport systems, because considering operators’ costs only
leads to suboptimal fleets (e.g., too few vehicles that increase waiting time, too small vehicles that
increase passengers’ crowding). The relevance of including both users’ costs and operators’ costs in
the analysis of public transport provision has been subsequently exposed by many studies (see
reviews by Jara-Diaz and Gschwender, 2003; Horcher and Tirachini, 2021). In what follows, we adopt
this paradigm of total cost functions - including users and operators- for the analysis of ODRP
systems.

Operator costs are defined by capital and operating costs (Delle Site & Filippi, 1998, Jara-Diaz et al.,
2017), which depend namely on the fleet composition (number of vehicles B[veh] and their size
K[pax/veh]), and their usage (defined by the vehicles-hour-travelled VHT or the vehicles-kilometres-
travelled VKT), respectively. User costs are more difficult to define, as they aim to capture all the
subjective aspects of users’ experience. User costs should at least consider the average times involved
in the different stages of the transport process: waiting time t,, [min], walking time t,[min], and in-
vehicle time t,[min]. Other aspects that can be included, but are disregarded in this paper, are the
unreliability of the system, how comfortable it is, or the eventual (and undesirable) presence of
transfers!. Putting everything together, the cost function can be written as:

cost = co(B,K) + cy(ty, ta, ty) (D
Where cpand ¢y stand for operators’ and users’ costs, respectively. A usual approach (similar to what

we do when running simulations in Section 4) is to assume these functions as ¢y, = (cg7 + co2K)B
and ¢y = pyty + Pata + Puty, Where cpy, o2 are operator cost parameters that translate everything

' For the case of public transport, van Lierop etal. (2018) provide a review on the factors considered by users when
evaluating their experience.



into the same monetary currency, and p,,, p, and p,, are the value of waiting, access and in-vehicle
time, respectively. The resulting users and operators costs are not exogenous, as they are
endogenously obtained when minimising the cost function given by Eq. (1). For instance, when
deciding which vehicle to assign to a particular request, operating costs as well as waiting and in-
vehicle time costs need to be considered. Investigating scale economies in these systems refers
precisely to all the sources of costs in Eq. (1). Overall scale economies means that the average total
costs decrease as the number of users increases, and this analysis can be disentangled to analyse
what happens with each component of the cost function when the demand grows.

As discussed by Basso & Jara-Diaz (2006), scale analysis in transport systems is a complex task
because the demand has a spatial dimension that cannot be aggregated through simplified indices
such as Passenger-Kilometres. Our analysis should be interpreted as a ray analysis (Baumol, 1986),
i.e., the demand grows proportionally keeping the spatial distribution constant. This implies that the
demand (i.e., the product) can be described by a single variable Y [pax/hour]. When we run numerical
simulations (Section 4), such a ray analysis is achieved first through the utilisation of (an expanded
version of) the single-line model, and then via selecting an increasing number of random requests
from a real-life dataset in Manhattan. It is worth noting that when demand grows, its distribution
might actually change, so that the scale analysis done here should be complemented with the analysis
of economies of scope (Jara-Diaz, 2007). Moreover, the on-demand nature of ODRP increases the
difficulty of the study of scale economies, as the traditional techniques presume that the decisions
(here the fleet size and their routes) are taken optimally, but doing so might be unfeasible when the
demand is not known beforehand, which is why we rely on a thorough set of simulations in Section
4 to verify and compare the different scale effects introduced later in this section.

We now propose and explain three sources of scale economies dealing with users, which will be
studied numerically in Section 4. Let us denote by Y the number of users per hour in the system, and
by p [pax/veh] the average load -or occupancy rate- of the vehicles (note that, by definition, it must
hold that p < K), which refers to the average number of passengers on board of a vehicle. As the
number of vehicles and their operation is decided optimally?, the variables B and p should respond
endogenously to the demand, i.e., B = B(Y), p = p(Y). The fleet size and the occupancy of vehicles
critically influence users’ experience and satisfaction, meaning that t; (Y) = t,(B(Y), p(Y),Y) forh =
w, a, v. We now study the effect of each of these variables on waiting, access, and in-vehicle times.

3.2 The Extra-detour effect

When more users enter an ODRP system, it becomes usually possible to serve more of them
simultaneously with the same vehicle, even if there are restrictions on the total waiting or travel
times3. Pooling users in shared rides is often optimal, as fewer vehicles are required compared to an
alternative with less sharing. Formally speaking, this means that p’(Y) > 0. The Extra-detour effect

Zor following some heuristic aiming for optimal decisions. We note that for this analysis, we assume K to be exogenous,
and we show in Section 4 that the analysis remains valid if K was also optimised.

% This can be formalised through the so-called shareability networks, that measure how many requests can be combined
together. As shown by Santi etal. (2014), and Tachet etal. (2017), a greater number of travellers entails a larger
shareability.



is a source of scale diseconomies for users, defined as the degradation in the quality of service
due the extra detours induced by the increase in the average number of passengers per
vehicle. Intuitively, as the vehicle routes are not defined a priori but adapted to the specific users
being served, the quality of service perceived by the users is sensitive to route choice. When the
vehicles are more shared, this increases the detours required by the system (Militdo & Tirachini,
2021a), which in turn increases waiting times. Moreover, the chance of walking instead of having a
door-to-door service increases as well, because the time savings from walking are larger when more
other passengers are affected. The Extra-detour effect can be expressed mathematically as*:

dtn _
” forh =w,a,v (2)

The Extra-detour effect is illustrated in Figure 1, where we show how the blue passenger increases
all the components of her travel time when the vehicle serves a new user (red). The Extra-detour
effect can get exhausted when vehicles run at capacity (or near capacity).

I (o) (o)

Figure 1. Example of the Extra-detour effect. The number of passengers is low in the top row, so users do not
share the vehicle, and the blue passenger faces little waiting time and no detour. When the demand grows
(bottom row), a new red co-traveller appears close to her, which increases her waiting time, requires her to
walk (marked with a dotted arrow), and implies a detour, degrading her perceived quality of service.

As discussed by Fielbaum & Alonso-Mora (2020), the fact that routes are not known beforehand, but
depend on the travellers, is specific to mobility providers that are both shared (otherwise vehicles
follow shortest paths) and on-demand (otherwise vehicles follow fixed routes). Therefore, this
source of scale diseconomies is specific to ODRP systems. Nevertheless, the Extra-detour effect can
be interpreted as similar to a well-known fact in public transport, namely that new users increase the
vehicle occupancy rate, which in turn increases the time spent at stops waiting for boarding and
alighting passengers.

It is noteworthy that the Extra-detour effect can affect other service attributes, besides t,,, t, and t,:

# Note that there might be specific circumstances in which a vehicle’s load can increase without increasing service times
(for instance, starting from any base situation, and duplicating the number of users for all those requests that have low
waiting times). Egs. (2)-(4) are valid when the demand grows without changing the spatial distribution. For a thorough
discussion about the methodological challenges of studying scale economies in transport systems when the network and/or
spatial distribution of the demand can be changed, see Basso & Jara-Diaz (2006).



e Fielbaum & Alonso-Mora (2020) identify two types of unreliability in ODRP: The “one-time
unreliability”, defined as changes that take place while a trip is executed due to emerging
requests, and the “daily unreliability”, that refers to facing different conditions each time a
trip is repeated. Both types of unreliability worsen when vehicles are more loaded, i.e., the
Extra-detour Effect increases unreliability as well. This is not a minor issue: for instance,
Alonso-Gonzalez et al. (2020) have estimated the value of reliability (that refers to the daily
unreliability discussed above) to be approximately half of the value of time.

e Sharing the vehicle with more users can be uncomfortable by itself, as studied by Ho etal.
(2018), Koénig & Grippenkoven (2020), and Lavieri & Bhat (2019), who propose the so-called
“willingness to share” to study the difference in comfort between traveling alone or with
other users. Note that this effect only occurs when vehicles start to increase their number of
passengers . The willingness or unwillingness to share a ride is related to an increase in
crowding, i.e., the discomfort perceived by passengers when having to share a limited space
(a vehicle or a station) with a large amount of passengers, , which has been thoroughly
studied in the public transport literature, as surveyed by Tirachini et al. (2013).

Although the Extra-detour effect is undesirable for passengers, there is one positive consequence of
the fact that p’(Y) > 0 from the operators’ standpoint: namely, the number of vehicles per hundred
users diminishes thanks to an increase in vehicle usage. This source of scale economies is usual in
shared systems (Fielbaum et al., 2020a).

3.3 The Better-Matching effect

Some papers that analyse ODRP have reported that, when the demand is large enough, it becomes
possible (and thus optimal) to form more efficient groups of users (Daganzo et al., 2020, Ke et al,,
2020, Lehe etal,, 2021, Zhang & Nie, 2021). This is an intuitive result, as a larger demand implies that
there are more feasible requests that can be matched together. The Better-matching effect is thus
defined as the ability to create groups whose routes are more compatible with each other when
the number of passengers increases, thanks to a larger pool of requests to choose from.
Formally:

ot _
aYSOforh—w,a,v (3)

The Better-matching effect is illustrated in Figure 2, where users 1 and 2 are first grouped together;
when new passengers emerge, they are separated and matched with other users such that the
resulting routes get more efficient.

The Better-matching effect also emerges thanks to the flexibility of the routes, i.e,, it is specific to
ODRP systems. However, it is similar to the increase in “directness” in public transport systems
reported by Fielbaum et al. (2020a), who argue that an increased number of passengers enables the
definition of lines that require fewer detours because more passengers share the same origins and
destinations.
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This effect also constitutes a source of scale economies for operators, as reducing detours also implies
areduction in VHT and VKT. The Better-matching effect is more evident when the assignment is done
by batches of users (see Section 3.1), as in that case groups are formed all at once; however, it is also
present under event-based approaches, as in that case the groups get formed sequentially as the
individual users are assigned (for instance, in the example shown in Figure 2, it is not relevant if the
assignments were decided all together or one-by-one).

Figure 2. Example of the Better-matching Effect. Both in the top row (low demand) and in the bottom row
(high demand) we exhibit groups of size two. In the top row, the red vehicle is instructed to serve passengers
1 and 2, which are also marked with a red color. When the demand grows (bottom row), new passengers 3
and 4 appear, allowing the system to form more efficient groups. User 1 is now grouped with user 3 and
served with a brown vehicle. Users 2 and 4 are grouped together to be served by a blue vehicle. The color of
the passengers marks which vehicle serves them. Total delay decreases for the two users that remain from
the top row, improving their perceived quality of service.

3.4 The Mohring effect

In public transport, the Mohring effect refers to the reduced waiting times that result from an
increase in the optimal fleet size as a response to a greater demand (Mohring, 1972). Similar effects
have been found for non-shared modes, such as taxis (Arnott, 1996) and ride-hailing (Castillo et al,,
2017); recent papers by Kaddoura & Schlenther (2021) and Lee etal. (2021) have also found an
analogous phenomenon in ODRP. Mathematically, this is represented by noting the obvious fact that
B'(Y) > 0 (more users require more vehicles), and that:

ot _
aBSOforh—w,a (4)

Note that Eq. (4) includes walking (access) as well as waiting. This is because a larger fleet implies
that vehicles are denser in space, hence shorter walks are required (when the system does not offer
a door-to-door service), as also analysed in the case of public transport (Fielbaum et al., 2020b) and
bike-sharing systems (Jara-Diaz et al., 2022). In the context of public transport, this is described as
the “spatial counterpart of the Mohring Effect” by Fielbaum et al. (2020b).
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3.5 Combination of the three effects

We have described three sources of scale effects: two positive ones (Better-matching and Mohring)
and one negative (Extra-detour) in the case of users’ costs. The Better-matching effect is induced
directly by the greater demand, which enables the creation of more efficient groups, the Mohring
effect is indirectly induced by a larger fleet, which diminishes waiting and walking times, whereas
the Extra-detour effect is derived indirectly from the larger passenger occupancy rate of the vehicles,

which increases detours and degrades the quality of service for some passengers. As the three effects
acy

might appear at the same time, it is uncertain which of them predominates. Formally, oy =

acy
ap
For operators, if vehicle size is exogenous, both the Extra-detour effect and Better-matching effect
reduce average costs, and therefore are sources of economies of scale; otherwise, the Extra-detour
effect can lead to larger vehicles which increases operators costs as per Eq. (1). In Section 4, when
running simulations, we identify the relationship between the scale three effects for different
demand levels.

p'(Y)+ % B'(Y) + (%’ , where the first term is negative and the other two terms are positive.

4. Numerical simulations

We now run numerical simulations of an ODRP system to analyse the occurrence of the scale effects
discussed above, and to see which of them predominates depending on the circumstances. The
system we simulate admits walks, is non-profit and adapts the fleet to have no rejections. To do so,
we leverage the assignment method from Fielbaum et al. (2021) and Alonso-Mora etal. (2017), by
deciding in real-time how many vehicles should be in operation, apart from the vehicle assignment
and user assignment. In what follows, we discuss how to compute the endogenous fleet depending
on the demand.

4.1 Computation of the number of vehicles in the ODRP system

In order to compute the fleet size together with the assignments between vehicles and users, we build
upon the ODRP model proposed by Fielbaum et al. (2021). Such a model extends the one by Alonso-
Mora et al. (2017) by optimising the pick-up and drop-off points, which might differ from the actual
origins and destinations of the users when asking them to walk increases overall efficiency. Both
models determine how to operate a fixed fleet of vehicles to serve the emerging requests. We extend
these works by computing the fleet endogenously. We first explain briefly how the original methods
work, and then describe this extension.

The ODRP system operates over a directed graph G = (N, A). Each requestr = (o,, d,, t,-) is a triplet,
representing the origin, the destination, and the time in which the trip is requested. Both the origins
and the destinations are assumed to be placed over the nodes of the graph. The assignment model
works using a receding horizon approach, meaning that it accumulates the requests that emerge
during a fixed amount of time & and assigns them all at once (hence it is batch-based), which updates
each vehicle's route. When such an assignment is decided, the vehicles follow their updated routes,
and the system begins to accumulate requests for a time § again, starting a new iteration.

12



Let us focus now on a single iteration, denoting by R the set of requests to be assigned, and by I/ the
current state of the fleet of vehicles. Each vehicle v is characterised by its position P, and the set of
requests assigned to it S;, (either in the vehicle or waiting for it). The assignment between R and V
takes place following these three steps:

Determine which are the feasible trips. A trip T is defined by a group of requests req(T) € R
and a vehicle veh(T), so that T is feasible if the requests in req(T") can be transported together
by veh(T), respecting some bounds on waiting and walking times, and on total delay
(denoted, respectively, 2,,Q,, and 2,). Such bounds affect users in req(T) and also in
Sven(T), whose routes might be updated due to the new requests. The delay is defined as the
extra time faced by a user compared to beginning her trip immediately, with no walking and
following the shortest path between her origin and destination. Each trip T might be served
by more than one route so that taking the route = imposes a cost to the system given by Eq.
(5). The route & is defined by the nodes in which the vehicle stops to serve everybody, thus it
contains implicitly the pick-up and drop-off points for every user.

COSt(T: 7T) = Zrereqt(T) CU (T, 77") + ZrES,,eh(T) ACU (T' T[) + ACO (T[) (5)

Where the first term represents the users’ costs for passengersin trip T, defined as a weighted
sum between waiting, walking, and in-vehicle times; the second term represents the extra
costs induced to the users that were being served by the vehicle prior to this assignment
(because their waiting and in-vehicle times can increase); and the third term expresses the
increase in operational costs, that are assumed to be proportional to the route length. The
route that offers the minimum cost is selected, so that the trip T is characterised by a single
figure that we denote cost(T).

It is worth commenting that computing all the feasible trips can be computationally
expensive, as their amount can increase exponentially with the number of requests (note that
this increase in the number of feasible trips is the mathematical expression of the Better-
matching effect, while the specific appearance of trips with many users represents the Extra-
detour effect). Such an issue is faced first by making a smart search of the feasible trips (using
that if vehicle v is able to serve group G, then it must be true that v can serve every subset of
G as well), and also by using a number of heuristics, explained in detail by Fielbaum et al.
(2021), to compute the sequence in which the users are served and the pick-up and drop-off
points.

Once the set I' of potential trips is known with their respective costs, some of them are
selected and constitute the actual assignment. To do this, an Integer Linear Programing (ILP)
problem defined by Egs. (6)-(8) is solved:

min ZTEF xTCOSt(T) + ZrER PkoZr (6)

x,z €{0,1}
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s.t. z, + ZT:rEreq(T) x-=1Vr €R (7)
Yrwenm)=v X T <1VV €V (8)

Binary variables x; represent the trips that are going to be executed (marked by x; = 1). In
the original model we are now describing, that operates with a fixed fleet, it is not always
possible to serve all the trips (the number of vehicles might not be enough), so rejected
requests are marked by z,, = 1. Each rejected request imposes a penalty py, to the system, so
Eqg. (6) is the objective function to be minimised when deciding the assignment. Eq. (7)
ensures that each request is either rejected or belongs to a trip that is going to be executed,
while Eq. (8) ensures that each vehicle is assigned to no more than one trip.

e Finally, a rebalancing step instructs idle vehicles (i.e.,, those with no requests before the
assignment and who did not receive anyone here) to move to certain areas where more
vehicles are needed. In our setting, we execute a simple rebalancing step when simulating a
feeder ODRP system, as explained in Section 4.2.1. We do not rebalance vehicles in the other
scenarios, as the rebalancing step proposed by Alonso-Mora et al. (2017) sends vehicles to
the places where users have been recently rejected, which does not occur here where we
impose that everyone must be served.

In this paper, we extend this model to decide how many vehicles to use at the same time as deciding
the vehicle and user assignments. To do so, we assume that the system begins with no vehicles, and
that there are some spots in the city (which is a set of nodes M < N) where potential vehicles are
placed. At each iteration (i.e., each time a batch of requests is assigned), the fleet of vehicles is
composed of two sets: the one inherited from the previous iteration, plus a set containing one non-
activated vehicle per request r € R, that is located in the node in M that is closest to its origin o,.. If a
non-activated vehicle is assigned to a group of requests, an activation cost ¢4 has to be paid, and the
vehicle becomes available for the rest of the period of operation without paying the activation cost
again. The parameter c4 includes all the costs that do not depend on the distance driven by the
vehicle, such as capital costs. This is formalised by altering the cost of the trips. Denoting by A(v) = 1
if vehicle v is activated (i.e., inherited from a past iteration) and A(v) = 0 if not, Eq. (5) is modified to
build the new cost function cost, (v), given by

costy(v) = cost(v) + ¢4 - [1 — A(veh(T))] 9)
Following Tirachini & Hensher (2011) and Jara-Diaz etal. (2017, 2020), we assume that both
components of operators’ costs grow linearly with the capacity of the vehicle. That is, recalling that
K is the capacity of the vehicles, and denoting by c, the proportionality constant that defines the
costs depending on the routes’ lengths, then:

Co = Co1 + Co2K, ¢a = a1 + Ca2K (10)

As we now have one non-activated vehicle per request, it is always feasible to serve everybody.

Therefore, we do not longer include variables z, in the ILP to be solved, removing the second term
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from Eq. (6), and modifying Eq. (7) accordingly to ensure that each request belongs to exactly one
assigned trip, i.e.

ZT:rEreq(T) xr=1VreR (11)

The problem is solved using the standard commercial ILP solver Gurobi. Finally, we include yet
another extension to the base model: we assume that a fixed time 7 is spent each time the vehicle
stops to pick up or drop off one or more passengers. We include this fact because it is relevant when
analysing scale economies, as sometimes the vehicle might use a single stop for more than one pick-
up/drop-off, saving some time.

4.2 The scenarios

The analysis of scale economies requires increasing the demand level without changing its spatial
distribution. We utilise the model described in Section 4.1 under two different types of scenarios. The
first one is an ad-hoc network, namely an extension of the single-line model that has proved useful
for scale analysis in transport systems in the past (see Section 2.2). The second one adapts a real-life
database from Manhattan for this purpose.

4.2.1 Extending the single-line model

The traditional single-line model studies the operational characteristics of a public transport system
in which the vehicles follow a predefined path, so everything is one-dimensional. Specific versions
are:

e The circular model, in which the line tours a circuit that presents the same average number
of users at every point. This model represents a line that carries a similar load all along its
length.

e The linear model, in which vehicles travel in both directions along a linear corridor between
two terminals. A particular case of the linear model is the feeder model, in which users board
the vehicle across its path, and they all alight at the end. This model represents a line that
goes to some relevant final destination, typically a public transport station, to board a high-
capacity public transport mode (e.g., rail, Bus Rapid Transit).

In any of these alternatives, the vehicle route is fixed beforehand and always the same. We aim to
extend this model, keeping most of its simplifying assumptions that make it a powerful tool, but
allowing for online decisions regarding the routes. To do that, we deploy a grid surrounding each bus
stop, where exact origins and destinations are situated. In the traditional model, such a grid can be
seen as an underlying street pattern that does not need to be explicit because users need to walk
towards the (fixed) bus stops anyhow. In such a case, walking times and distances are assumed
exogenous, meaning that the operation and optimization of the public transport line are not affected.
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Figure 3. Extensions of the single-line model to recreate the network in which the ODRP system operates,
replacing either a feeder line (a) or a circular line (b). Origins can be placed in any intersection, and the same
happens with destinations in the circular model. In both cases, there are 8 zones, each formed by a 3x5 grid.

Red dots represent the stations in which the ODRP vehicles begin their journeys. Dark black streets are
bidirectional and can be toured with a higher speed. The traditional single-line model is recovered by
considering only the long avenue that connects all the red dots.

To be precise, we assume that each bus stop belongs to a zone, which is an a X b grid, with a, b odd
numbers, so that the bus stop is located at the centre of the grid. That set of stops represent where
the potential vehicles for the ODRP system are located (the set M defined above). The central streets
of the grid are bidirectional, and vehicles tour them at velocity v;, whereas the rest of the streets are
unidirectional5, with alternate directions and velocity v,, where v, < v;. Having streets of different
velocities and directions help to capture that not all routes are equally good for the vehicle to follow.
The whole network is formed by chaining consecutive zones. If there are Z zones, this makes a Z -
a X b grid in the feeder model; in the circular model, the same happens, but the last zone is chained
with the first one, forming a circular grid. Both networks are depicted in Figure 3.

Regarding the demand, we want to keep the homogeneity assumptions from the single-line model
but enabling for more complex routes. A constant number of users Y emerge per time unit, and the
exact origin is random: we first choose the zone with uniform probability; within that zone, the
central node is chosen with probability p, the rest of the nodes located in the central streets with
probability py, and the nodes out of the central streets with probability py?. The parameter p is
adjusted to make the sum of the probabilities within every zone equal to 1, and the parameter y €
(0,1) controls how dispersed the demand is within a zone (the lower the y, the more concentrated
the demand in the vicinity of the bus stop). The destination is computed differently depending on the
model: in the feeder one, everybody goes to the centre of the final zone, whereas in the circular model,
the destination zone is located I zones ahead, plus a random variable that is obtained rounding a
normal distribution with mean zero and variance o%; the exact destination is found within that zone
using the same rules involving p and y as for the origin.

5 In the feeder model, the first and last transversal streets are also bidirectional so that there are no isolated nodes.
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As mentioned above, in the feeder model we need to rebalance idle vehicles to prevent them from
accumulating in the common destination of all users: after reaching that node, they are sent towards
the central node of the first zone (i.e., the one located at the largest distance from the shared
destination). Such vehicles will not necessarily arrive there because they will be considered available
in the following iterations, meaning that they might receive new passengers before reaching the first
zone.

4.2.2 The Manhattan scenario

Similar to other studies that have simulated ODRP (e.g., Alonso-Mora et al., 2017, Simonetto et al.,
2019), we leverage the public database generated by the NYC Taxi & Limousine Commission, that
contains all the taxi trips that are executed in Manhattan. For each trip request, we know the number
of users, its time, origin, and destination. The graph is composed of 4092 nodes and 9453 arcs. We
consider one hour of the operation of the system, just after 1 pm of January 15th, 2013, which has
10774 trip requests. In order to perform scale analysis while keeping the spatial distribution of the
demand somewhat constant, we repeat the simulations several times, each time increasing the
number of requests that are considered. To be precise, for every repetition, and before running the
simulations that represent one hour of operation, we decide randomly whether each request is
considered or not. The probability of including a request is the same for every request, and this
probability increases for each repetition. By this means, the set of requests to be assigned is larger
every time, but their spatial distribution is kept on average, as the requests are selected randomly
from the same universe set.

Here there is no natural candidate for where the vehicles should begin their journeys when they are
activated (the equivalent to the centre of each zone in the single-line model). To face this issue, we
cluster the network, finding the minimum number of centres such that every node in the network
can be reached in less than 2,, from at least one centre. This problem is solved by an ILP (described
in detail by Wallar et al. 2018), which leads to 19 centres. Therefore, when a request needs to travel
from a node x, the corresponding potential vehicle will be placed in the centre that is located closest
to x.

4.2.3 Definition of the bounds in the quality of service

As explained in Section 4.1.1, the assignment procedure in ODRP imposes predefined bounds on the
quality of service, namely maximum waiting (£2,,) and walking (£2,) times, as well as a maximum total
delay® (£2,)). Defining such bounds is a relevant issue, as it has relevant impacts on the performance
of the ODRP system. For instance, if the bounds are too tight and users are too spread, then the system
might require to allocate almost one different vehicle per request, leading to a huge fleet; on the other
hand, if the bounds are too large (or inexistent), one single vehicle might be able to serve all the
requests, but offering an awful (and unrealistic) quality of service. We will consider two ways in
which these bounds are defined:

8 Such bounds ensure that users will indeed accept the assignment proposed by the system rather than searching for an
alternative mode. Moreover, without them the algorithmic burden of the problem would be unmanageable, as every
possible group of users could be feasibly served by any vehicle.
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a. Endogenous bounds

First, we consider a case in which the bounds are calculated as a function of the demand, using longer
time windows when the demand is low. This is done for the single-line model, as it mimics what
passengers usually face when using public transport: when they want to make a trip on a high-
demand corridor, they can rapidly find a bus (or any alternative mode they are using), and the
contrary happens in low-demand areas (a similar argument has been proposed by Yan et al., 2020
when proposing their dynamic waiting strategy). Thus, we define the bounds to replicate this
behaviour, by means of the classical single-line model by Jansson (1980) and the posterior
adaptations by Jara-Diaz & Gschwender (2009), described in Appendix A.1, where the key variable is
the optimal frequency f. The bounds are defined as follows:

e Waiting: The maximum waiting time that can be faced in the public transport system occurs
when a passenger arrives at the station just after a bus leaves, waiting for 1/f (a quantity that
decreases with the number of passengers). Recalling that when a vehicle is activated, it goes
from the station to the pick-up point, we need to ensure that there is always enough time to
wait for such a movement. Denoting by t;the vehicle-time from the station to the corner of

: 1
the zone’s grid, we use 2,, = max{}:, t1}.

e Walking: The maximum amount of walking in the public transport systems is t,, defined as
the walking time between the station and a corner of the zone’s grid, so we use 2,, = t,. When
we simulate the case in which ODRP offers a door-to-door service, this bound is reduced to
Zero.

e Delay: There are two sources of delay in public transport with respect to the time in the
vehicle: walking and waiting. The first one should be accounted for twice, at the origin and

N 1
destination. Therefore, we use (2, = max{;, t1} + 2t,.

b. Exogenous bounds
Defining the bounds as a function of the demand volume may have a drawback, namely that the
varying bounds may interact with the other scale effects that we are analysing. For this reason, we
also study the case in which the bounds are exogenous, using £2,, = 3 minutes, 2, = 4 minutes, and
(), = 6 minutes.

4.3 Results

We simulate one hour of operation of the ODRP system, for increasing demand levels, in order to
identify scale effects. The numeric values of the parameters are shown in Table A.1 in the Appendix.
All figures in this section use a logarithmic scale in the x-axis, because the phenomena that we study
tend to stabilise when the number of passengers is high, so zooming in the lower values helps the
analysis. The simulations are run for different values of K (the size of the ODRP’s vehicles), including
vehicles with capacity for 2, 3, 4, and 5 passengers.

Most results consider the base case in which we assume the availability of automated vehicles (AV)
and walks are allowed. We assume that AV differ from human-driven vehicles in the parameters that
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represent operator costs: on the one hand there is a reduction in operating cost due to savings in
driver wages, on the other hand there is an increase in capital cost due to the added cost to provide
vehicles with automation capabilities, which is taken from Tirachini and Antoniou (2020). We will
assume that the velocity at which vehicles run do not depend on such a technology: differences in
velocity due to automation are still uncertain, as AV might run faster (thanks to better coordination
among vehicles) or slower (due to safety reasons, particularly in urban roads when surrounded by
pedestrians, cyclists and human-driven vehicles). Specific assumptions about differences in velocity
may have a large impact on the results (Tirachini & Antoniou, 2020).

4.3.1 Time windows adapted endogenously to demand - Circular model

We first describe the results when the time windows 0,,, Q,, Q,, are calculated as a function of the
demand. We show the results of the circular model in Figures 4 to 8. Figure 4a shows a condensed
way to describe the quality of service of the ODRP system from the users’ point of view: total delay,
i.e., the extra time faced by them when they use this system instead of travelling in a private vehicle.
Figure 4b exhibits the average occupancy rate [pax/veh] per vehicle p at the end of the simulation,
which was identified as the crucial factor for the existence of diseconomies of scale (the Extra-detour
Effect). Total delay includes walking time, waiting time, and detour once in the vehicle. Scale effects
are evident: At the very beginning of the curve, up to around 250 passengers/h, there is a reduction
in total delay. However, when the number of passengers continues to grow, diseconomies of scale
appear as the average delay increases to 5 min/passenger for demands up to almost 1000
passengers/h. Remarkably, the appearance of diseconomies of scale coincides exactly with the
moment in which p starts to increase (before that, it slowly decreases, which is explained by the
changes in the time windows). Then, the average delay is once again reduced, to reach around 2
min/passenger for 3000 passengers/h.
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Figure 4. a) Average total delay faced by the users, and b) Average load per vehicle at the end of the
simulation, in the ODRP system for the circular model with endogenous time windows, as the number of
hourly passengers grows. Different curves represent different vehicles’ sizes.
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Figure 5. Average waiting time (a), walking time (b) and detour (c), faced by the users of the ODRP system in
the circular model with endogenous time windows, as the number of hourly passengers grows. Different
curves represent different vehicles’ sizes.

To delve into the curves from Figure 4 and identify the emergence of the three effects described in
Section 3, we disentangle the total delay per passenger in its three components in Figure 5: Waiting
(a), walking (b), and detour (c). Waiting times evolve similarly to total delay.

Let us begin our analysis after the strong drop at the beginning of the graph. The remainings of the
curves reflect that the average delay first increases and then slowly decreases. Diseconomies of scale
emerge when Y reaches about 250 passengers/h. Until that point, there is little sharing in the system
(below 1.3 users per vehicle), because it is difficult to find compatible users, implying that most users
travel alone’. When vehicles begin to be shared with more people, one of its consequences is that
vehicles do not go directly to pick up the users but deviate to serve some co-travellers, hence
increasing waiting times. This effect dominates for demands greater than 250 passengers/h. The
same phenomenon can be seen related to walking and the detour, which also start to increase when
crossing the same threshold. Noteworthy is that the smaller the vehicle, the lower the detour, and
that detours can be negative, meaning that the distance between the pick-up and drop-off points
might be lower than between the corresponding origins and destinations (due to walking). Therefore,
our simulations confirm the Extra-detour effect as a relevant source of diseconomies of scale in
ODRP systems: an increase in the number of users implies that the vehicles will be shared by
more passengers, which increases average travelling times.

The Extra-detour Effect eventually gets exhausted. At some point, the vehicles no longer increase
their load (when they are running at capacity, considering their current passengers and the ones that
are waiting to be picked up). When this happens, Figures 5a and 5b reveal that waiting and walking
times begin to diminish. That is to say, the two sources of scale economies described in Section 3
begin to dominate: the Mohring Effect and the Better-matching Effect. We can synthesise these scale

" This occurs in some real-life scenarios. In several towns around Munich, Germany, during some specific time windows in
which the demand is very low (between17:30 and 5:45 in working days) , the public transport agency sends private taxis
to fulfil it. This result has also been reported by Daganzo et al. (2020) when comparing three different demand levels with
vehicles of capacity 2 pax/veh.

See https://www.mvv-muenchen.de/mobilitaetsangebote/bedarfsverkehr/mvv-ruftaxi/index.html (Accessed:
10/08/2022).
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effects by stating that two relevant sources of scale economies in ODRP are that the increase in
the number of users leads to 1) a larger fleet, which reduces waiting and walking times,
similar to the Mohring Effect in fixed-route public transport, and 2) matching users whose
routes are more compatible.

The quick drop at the beginning of the curve is explained by the Mohring Effect, but only regarding
waiting times because for such a demand there is almost no walking. As vehicles’ occupancy rate does
not increase yet, neither the Extra-detour nor the Better-matching Effects operate significantly.
Actually, the average occupancy rate decreases slightly, due to the decrease in £,, and 2, which
makes the Mohring Effect even stronger as more vehicles are needed.

It is worth commenting that the Mohring Effect is usually more important at low demands because
when the number of vehicles is already large, the marginal impact of an additional vehicle is low in
reducing waiting times. Then, the drop in average times at the end of the curve is mainly driven by
the Better-matching Effect.

The fact that there is no walking at all when the demand is very low is explained because there is
little sharing and it is difficult for vehicles to chain consecutive trips. Thus, many times the only user
involved when deciding a vehicle’s route is the one being transported, and for her it is more
comfortable to have a door-to-door service (as usual in the literature and shown in Table A1 in the
Appendix, we assume that p, > p,,). The absence of walks also explains why the detour is longer at
the beginning of the curves. This suggests that if p, was low (but greater than zero), the Mohring
Effect would affect walking times for low demand volumes as well. Note that the average walking
time increases slightly before the large jump at 250 passengers/h, which is explained by the changes
in the time windows, as sometimes such short walks can enable a group that would be otherwise
infeasible.

The analysis above confirms the three sources of scale discussed in this paper. However, the varying
bounds on the quality of service do play a role in the analysis, which is why in Section 4.2.3 we analyse
the case with fixed bounds, where we show that the qualitative conclusions remain valid.

The comparison among different vehicle sizes is also informative. The smaller the vehicle, the lower
the number of passengers per vehicle, and thus the detour. Walking times are not affected
significantly by the vehicle capacity adopted. On the other hand, waiting times are slightly larger for
smaller vehicles when the demand lies in the range of 250-1000 passengers/h. As the fleet size is
mostly unaffected by the vehicle capacity within that range (see Figure 6a), it is more likely that the
assigned vehicle is not immediately available when vehicles are small.
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Figure 6. Fleet size (a) and Vehicle-Hours-Travelled (b), normalised by the number of passengers, as this last
quantity grows. Different curves represent different vehicles’ sizes.

The evolution of the components of operator costs (depicted in Figure 6) is mostly characterised by
scale economies when exceeding the threshold in which vehicles start to be shared more intensively;
before the threshold, it exhibits an irregular pattern in which the randomness of the requests play
the most relevant role. This is reflected in the fleet size (Figure 6a), which also exhibits scale
economies in public transport, and too in operating costs (vehicle hours travelled VHT, Figure 6b).
Thatis to say, an operator-related source of scale economies is given by the increase in sharing,
which makes the number of vehicles and VHT increase less than linearly with the number of
users. It is noteworthy that using smaller vehicles requires a larger fleet when used at capacity,
which also increases VHT. Both curves eventually stabilise, meaning that this source of scale
economies gets exhausted.

6 2
5 ” 1.8
o
=) 216
E 3. .
~ a1
g3 3
a 21 2
=2 %)
< 5 1
*
1 0.8
0 st st : 06 : :
100 300 1000 3000 100 300 1000 3000
Passengers/Hour (log scale) Passengers/Hour (log scale)
a) b)

Figure 7. Average delay (a) and Seats per passenger (b), yielded by the ODRP system in the circular model
with endogenous time windows, as the number of hourly passengers grows, when the optimal capacity is
selected.

So far, we have exhibited results for a range of vehicle capacities, from 2 to 5 passengers/veh.
However, the system should utilise vehicle sizes that minimise total costs. Our results indicate that
the smallest vehicles (capacity 2) should be used if Y < 550, and capacity 3 thereafter. Figure 7
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synthesises scale effects for users and operators when the capacity is optimised. The delay curve
(Figure 7a) looks almost exactly as Figure 4, meaning that all the scale phenomena discussed above
remain valid. Figure 6 implies that both the number of vehicles and VHT still exhibit scale economies
when the capacity is optimised, but there remains one aspect to be analysed: the number of seats S,
defined as the product of the number of vehicles and their capacities. Recall that, according to Eq.
(10), operators’ capital and operating costs depend both on the total number of vehicles and on S.
The evolution of S when the capacity is optimised is shown in Figure 7b: it is similar to what we
observed regarding fleet size (first erratic and then scale economies), but with a small jump when
the optimal capacity switches from 2 to 3 (around 600 passengers/h in Figure 7b). We note that in
real-life implementations, the fleet might not be homogeneous, i.e,, it is possible to have vehicles of
different sizes, which would decrease the size of these jumps as the average K would approach a
continuous function; however, optimally routing and operating a heterogenous fleet is quite complex,
let alone designing it, so this is beyond the scope of this paper.
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Figure 8. Average (a) total costs, (b) operator costs and (c) users cost per passenger in the circular
model with endogenous time windows, as the number of hourly passengers grows, when the optimal capacity
is selected. Different curves represent different types of vehicles and whether walks are enabled in ODRP.
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In Figure 8, we synthesise the results by depicting average total costs, and also average users and
operators costs. We further include two alternative scenarios: forbidding walks (i.e., providing door-
to-door service), and utilising human-driven vehicles instead of AVs, which diminishes capital costs
but includes the drivers’ wages. Figure 8a shows the average cost per user: in all three scenarios, we
observe the same situation, namely, no clear trends for very low demands and economies of scale
after a certain demand threshold is reached. This implies that the sources of diseconomies of scale
that we identified for the users get outweighed by the sources of economies of scale for the operators,
leading to a global situation of economies of scale that eventually get exhausted. Note that
having overall economies of scale means that the sources of diseconomies of scale (crucially the
Extra-detour Effect) can be compensated through pricing. Some relevant insights can be obtained
from the comparison between the different scenarios and vehicle technologies:

e Using AVs reduces the total cost to a considerable extent. This fits intuition, as having drivers
for each small vehicle can increase total costs significantly (Bosch et al., 2018).

e In general, operator costs (Fig. 8b) are larger than user costs (Fig 8.c) and the shape of the
total cost curves is mostly driven by the shape of the operator cost curves. In Figure 8.c,
sharing a vehicle significantly increases users’ cost due to extra waiting, walking (when
admitted), and detours. Users would prefer not to walk, but because walks are short, the
advantage of a door-to-door service is much smaller than what is gained in terms of
operators’ costs when walks are admitted.

e When the number of users is large, enabling walks can be as important as changing the vehicle
technology: both non-solid curves exhibit similar values of average total cost in Figure 8. In
fact, an ODRP system with human-driven vehicles that enables walking has a lower
total cost than a system with AVs without walks, for some demand levels. This is a
remarkable finding regarding the value of designing an ODRP system with short walks.

e On the other hand, as there is little walking when the number of users is low (the system
works similar to a private door-to-door service), for demands below 250 passengers/h the
corresponding impact of enabling walks is negligible.

e The curve in which walking is not allowed exhibits returns that are almost constant to scale
(similar to the findings by Militdo & Tirachini, 2021). Therefore, admitting walks happens
to be crucial to trigger scale effects.

4.3.2 Time windows adapted endogenously to demand - Feeder model

There is an emerging research trend that studies the potential of ODRP services to help solve the so-
called “last-mile problem”, i.e., as a feeder that connects the main public transport stations with the
specific origins (or destinations) of the users (e.g., Biirstlein et al.,, 2021, Chen et al., 2020, Fielbaum,
2020, Kim & Schonfeld, 2014, Leffler etal.,, 2021, Ma etal,, 2019, Wen et al.,, 2018). For the ODRP
system, the main difference with respect to the circular model is that everybody shares one extreme
of the trip, which means that this model can also represent the case in which there is a very attractive
destination, such as the city centre. In our simulations, all users are travelling to the same destination
(for instance, to take a second vehicle that does not affect the ODRP operation). Therefore, compatible
routes are much easier to find. The only requirement is that when a vehicle is following a route, new
passengers have to be located close to that route. This demand pattern has a significant effect in the
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simulations: for the same number of users, the number of feasible trips is multiplied by about twenty
compared to the circular model. This increases the computational burden significantly, which is why
here we simulate only up to capacities equal to four.

There is yet another relevant difference related to idle capacity. As users move all in the same
direction, and the network is no longer circular, the vehicles must actively return in order to find
some new passengers. Recall that this is executed through a rebalancing step: idle vehicles are sent
towards the other extreme of the network, but they might not arrive there because they are still
considered available for the emerging users.

The results of the simulation are depicted in Figure 9, considering the base model (AVs and enabling
walks). Figure 9a condenses the information regarding users’ costs by displaying the average delay,
which shows the same trends as observed in the circular model, verifying the presence of the three
sources of scale economies discussed above. Figure 9b shows the average number of passengers per
vehicle (excluding vehicles being rebalanced), confirming that vehicles start to increase their
occupancy rate when some threshold in the number of passengers is exceeded. Moreover, the usage
of the vehicles is much higher than in the circular model. When looking into total costs (Figure 9c),
the same conclusions obtained for the circular model remain valid: average costs do not show a clear
trend at the beginning, and scale economies prevail afterwards until they eventually get exhausted.
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Figure 9. Average delay (a), active vehicle’s load at the end of the operation (b) and costs (c), faced by the
users of the ODRP system in the feeder model with endogenous time windows, as the number of hourly
passengers grows. Different curves represent different vehicles’ sizes.

4.3.3 Fixed time windows - Circular model

We now show the results when the bounds on the service times 2, Q,, Q, are exogenous and
independent of the demand level. This case requires very long computational times, as the high-
demand scenarios do not have short time windows, which leads to combinatorial problems of large
size. This is why we only present results from the circular model and consider vehicles with capacity
2 and 3.
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Figure 10. a) Average total delay faced by the users, b) Average load per vehicle at the end of the simulation,
and c) Average costs, in the ODRP system for the circular model with exogenous time windows, as the
number of hourly passengers grows. Different curves represent different vehicles’ sizes.

Results are shown in Figure 10, and reinforce the conclusions previously discussed. Figure 10b is
very illustrative, as it shows that for very low demand (lower than 30 passengers/h) there is no
sharing at all (at the end of the simulations), so that the only relevant scale source is the Mohring
Effect and average delay (Figure 10a) decreases. When the average occupancy rate begins to increase
(Figure 10b), the same happens with the average delay, triggered by the Extra-detour Effect. For a
demand larger than 100 passengers/hour, the average delay starts to decrease again, coinciding with
the threshold after which the average load increases at a lower rate. Figure 10c shows that when all
costs are accounted for, scale economies prevail and eventually get exhausted.

4.3.5 Fixed time windows - Manhattan

We now show the outcome of simulating one hour of ODRP operation over Manhattan, considering
subsets of increasing size extracted from a real-life database of taxi travellers. Results are depicted
in Figure 11, and show that the qualitative sources of scale that were discussed in Section 3, and
verified numerically in ad-hoc networks in the previous subsections, remain valid under this real-life
scenario. The delay (Figure 11a) first decreases (Mohring effect), then increases (Extra-detour
effect), and then decreases again (Better-matching effect). The threshold where the trends change
coincides with the changes in the average occupancy rate per vehicle (Figure 11b): when vehicles
begin to be shared, the delay starts to increase, and when the sharing rate becomes more stable, the

delay decreases. Finally, Figure 11c shows once again that when all costs are taken into account, scale
economies prevail but eventually get exhausted.
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vehicles’ sizes.

4.4 Evolution and predominance of the three user-related scale effects

We can now discuss the question posed at the end of Section 3: which of the user-related scale effects
predominate and under which circumstances? The evolution of user-related scale phenomena as the
number of users increases is described in Figure 12. It is a stylized schematic figure that divides the
analysis into three demand ranges, representing the respective demand segments (as seen in Figures
63, 93, 103, and 11a) in which the average delay first decreases, then increases, and then steadily
decreases again. Figure 12 shows the so-called Degree of scale economies (DSE), which is formally
defined for any production function as the ratio of the average cost to the marginal cost: this means
that there is a threshold in DSE= 1 determining whether economies or diseconomies of scale prevail.
The mentioned three sectors are:

When the number of passengers is low (first segment of the curve, e.g. in the late-night
period), users hardly share a vehicle, so that the Extra-detour and the Better-matching Effects
are almost non-existent. This means that the Mohring Effect (which is more prominent when
the demand is low) prevails, and there are economies of scale.

Eventually, users begin to share the vehicle, and the system enters into the second demand
range. The Extra-detour Effect begins to operate, and diseconomies of scale prevail. The
Mohring Effect is still present, but dominated. The Better-matching Effect also starts to
operate but mildly due to the increased passenger occupancy rate. The minimum of the curve
represents the point at which vehicles’ load increases at the fastest pace.

Finally, when the vehicles cannot carry more passengers (they are full), the Extra-detour
Effect disappears, and the Mohring Effect has little impact. The Better-matching Effect, on the
other hand, is fully operative, leading to DSE> 1. Eventually, DSE converges to 1 as all these
sources get exhausted.
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4.5 Comparison with an idealised public transport model

As the single-line model resembles the operation of a traditional public transport line, it is natural to
analyse under which conditions ODRP could replace such a line. A precise model of the public
transport is out of the scope of this paper; however, we do perform a comparison with an idealised
public transport line, whose frequency and bus capacity are optimised following a procedure
described in Appendix A.1. Such a comparison is depicted in Figure 13, and is informative regarding
the trends in the respective curves. Figure 13 depicts the ratio between the total costs (including
operators and users) of ODRP and public transport, considering both the circular and the feeder
models. In ODRP, we select the capacity of the vehicles that minimises total costs, considering
endogenous time windows. ODRP is in the numerator, so that a value lower than 1 implies that ODPR
provides the lowest total cost. The most relevant conclusions of this comparison are the following:

e ODRP should only be preferred if the demand is very low, in line with the findings of previous
research efforts, as described in Section 2. This result is driven by the small size of the ODRP
vehicles, and relates to the almost door-to-door scheme that results in such scenarios. This
last characteristic also explains why ODRP is more competitive in the circular model for low
levels of demand, as in the feeder model, public transport also has zero walking at the
destination, softening the benefits of ODRP.

e For large demand levels, ODRP is more competitive in the feeder model. Note that in public
transport, vehicles also need to “rebalance”, i.e., to return empty to the other extreme of the
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network. In this case, all vehicles have to arrive there, as their route is fixeds. In ODRP, they
do not need to arrive at that extreme, so that flexibility plays a role in diminishing the idle
capacity of the system.

e For large demand levels, curves tend to stabilise, which is a natural result of the constant
returns to scale that characterises all these systems in such scenarios.

In all, if one has to choose between using only ODRP (with small vehicles) or only traditional public
transport, the former should be chosen only for low-demand zones. However, our results regarding
the presence of scale economies when the demand is large, suggest that other types of integration
could yield even better results, utilising both systems in some complementary way to take advantage
of the good quality of service that can be offered to the users. How to design such an integrated system
is a broad question that goes beyond the scope of this paper, but recognizing that there might be
room for improving public transport provision in high-demand zones by means of smart utilisation
of ODRP systems is a promising venue for further inquiry.
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Figure 13. Comparison between ODRP and public transport average costs as the number of hourly
passengers grows, when the optimal capacity is selected, using AVs and enabling walks. Different curves
represent the circular and the feeder model.

5. Conclusions and future research

In this paper, we have identified and analysed the sources of economies and diseconomies of scale
in on-demand ridepooling (ODRP) systems. To do this, we have extended a state-of-the-art
assignment method for ODRP, in order to optimise the fleet size together with the decisions of how
to group the users and which vehicles are assigned to each group of passengers.

We have discussed three scale effects affecting users, implying both positive and negative
externalities to the other passengers. Positive externalities are the Mohring effect, i.e., a reduction of
waiting times as demand grows, and the “Better-matching effect”, i.e., the reduction of access times,
waiting times, travel times and operator costs that it is possible because more efficient groups of
passengers can be formed when demand grows. The negative externalities relate to increasing the

8 Both problems might be faced with ad-hoc techniques like having some vehicles serving only the last portion of the line,
i.e., a “short-turning” strategy, potentially combined with deadheading, as studied by Cortés et al. (2011).
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number of users per vehicle, which induces longer detours, a phenomenon we call the “Extra-detour
Effect”. There are only positive externalities on the operators’ side, namely that vehicles can be used
more intensely so that the fleet size grows less than linearly as a function of demand.

Such effects have been theoretically discussed and verified in simulations, which have been run
considering several different scenarios, including two simplified single-line configurations (in which
ODRP is assumed to operate in the equivalent of a zone covered by a public transport line) and one
real-world network from Manhattan, New York. Results are remarkably similar across all the
scenarios analysed. The simulations have enabled determining which of these scale effects prevail as
the number of passengers increases. First, for low demand levels, there is little sharing and scale
economies prevail thanks to the Mohring effect. Then, as total demand grows, users start to share
rides and the Extra-detour effect dominates, leading to a global situation of diseconomies of scale for
users. Finally, if demand increases even further, vehicles run at capacity and again positive effects
prevail thanks to the Better-matching effect.

We have found that for the efficient operation of ODRP in a setting without request rejections, the
possibility of asking the passengers to perform short walks to pick-up points is crucial to keep total
costs low, both for users and operators. In particular, we have found that an ODRP system with
human-driven vehicles and walks allowed has a total cost at a similar level to that of a door-to-door
ODRP system with automated (fully driverless case) vehicles. This finding has significant
implications for the current and future design of mobility systems based on shared vehicles and
shared rides, either with human-driven or automated vehicles.

If the system designer has to choose between a traditional public transport line or an ODRP system,
the latter should be mostly preferred for low-demand zones. However, the scale effects in ODRP
suggest that there could be other ways of integrating both systems to enhance public transport and
attract users from private modes in high-demand scenarios, especially for feeder-like systems.
Understanding how this could be done is the most relevant future research question that emerges
from this paper.

Our findings might be limited by the assignment method we utilise. However, even if another
numerical setup may change the average costs estimated, we have qualitatively argued that (i) the
three scale effects under scrutiny do exist in ODRP systems in general (including references to other
studies when appropriate), (ii) they interact with each other and (iii) the influence of each other in
pushing average costs up or down depends on the total demand level.

As extensions to the current approach, including some market-related effects is a promising path.
Considering that the fleet is owned by one or more for-profit shared-mobility companies might have
an influence on scale analysis that is worth studying. Similarly, it is worthwhile to consider the case
where the supply is not centrally controlled, i.e. drivers can choose when to connect and which
passengers to accept. Finally, users’ strategic responses to different pricing policies can have a
relevant effect on the degree of sharing and therefore on the Extra-detour and Better-matching
effects.
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Appendix

A.1 Public transport model

In order to compare the performance of the ODRP and the public transport systems, we now describe
the public transport model we assume, following the classical model by Jansson (1980) and the
posterior adaptations by Jara-Diaz & Gschwender (2009). We will describe in detail the circular
model only, as the feeder one can be derived directly. Let us begin introducing some notation: T refers
to the time required by a bus to tour the whole circuit, i.e.

T == (A1)

Where L stands for the length of each arc. We assume that each user requires an average time t to
board and alight the bus. Denoting by f the line frequency (to be optimised) and by Y the number of
passengers per time unit, then the bus cycle time is:

ty

t.=T
c T

(A2)

To use Eq. (A2) to express the operators’ costs, we use Eq. (10), i.e., assume that both operational and
capital costs grow linearly with the bus capacity K. As the operating time is fixed in the public
transport case (buses are operating all the time), this means that each bus cost can be expressed as
c1 + K, with c; = ¢4 + Ecpq,¢2 = cqy + Ecpy, Wwhere E is the total operation time. Operators’ costs
can then be written as:
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fT+tY/f)(c1 + c2K) (A3)

Users’ costs are a weighted average of waiting, walking, and in-vehicle times, through the respective
parameters p,,, P, and p,. Therefore, the public transport costs are calculated by solving the
following optimization problem:

T;(lif?’lf(T + tY/f)(Cl + CZK) + Y(pwtw + pata + pvtv) (A4‘)

st.K > %Y (A5)

Eq. (A4) represents the sum of operators’ and users’ costs. We assume homogeneous headway,
vehicles do not run full (passengers can board the first vehicle that arrives) and random user arrivals
at constant rates, which imply that the average waiting time is t,, = 1/2f. Average in-vehicle time ¢,
can be calculated as we know the average distance traveled by the users; it includes running time
plus time spent at stops where other users board and alight. Average walking distance can be
computed directly when the random demand is created, by calculating the distances between the real
origins and the bus stations of the respective zones, and doing the same for the destinations. Dividing
such distances by the walking speed v, results in the average walking time t,. Eq. (A5) ensures that
all users will fit on the bus. As the objective function in Eq. (A5) increases with K, this constraint will
always be active. Factor a represents the ratio between the most loaded and the average arc, which
can also be computed directly once the random demand is known.

A.2 Glossary and numerical value of the parameters

Symbol Meaning Value

) Time elapsed between two consecutive assignments in ODRP. 1 [min]

T Time spent by the ODRP vehicle at each stop. 10.5 [sec]
a Number of longitudinal streets in a zone. 5

b Number of transversal streets in a zone. 7
2 Vehicles’ speed in fast streets. 25 [km/h]
2 Vehicles’ speed in low streets. 12.5 [km/h]
Z Number of zones 45

y Level of dispersion of the origins and destinations within a zone. 0.2

l Average number of zones toured by the users in the circular model. 10
o? Variance of the number of zones toured by the users in the circular model. 4

L Arcs’ length. 50 [m]

t Time required to board and alight a public transport vehicle. 5 [sec]
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E Total operation time 10 [h]

Co1 Fixed operating cost per vehicle. 1.13 [US$/h]

Co2 Capacity-dependant operating cost per vehicle. 0.074 [US$/h-seat]

Ca1 Fixed capital cost per vehicle (AV/Human-Driven). 24.6/78.1 [US$]

Ca2 Capacity-dependant capital cost per vehicle (AV/Human-Driven). 2.1/1.2 [US$/seat]

Vg Walking speed. 5 [km/h]

j Monetary equivalent cost of one time unit spent by a user in-vehicle. 2.32 [US$/h]

Pa Monetary equivalent cost of one time unit spent by a user waiting. 4.64 [US$/h]

Pw Monetary equivalent cost of one time unit spent by a user walking. 4.64 [US$/h]
Table A1: Glossary of the parameters used throughout the paper. Stopping time 7 is computed following

Roess et al. (2004). Operators’ cost parameters s, Coz, Ca1, Caz for human-driven and automated vehicles are
calculated for Santiago, Chile, based on Tirachini & Antoniou (2020). Time required to board and alight the
vehicles t is taken from Jara-Diaz et al. (2017). Walking speed v,, as well as users’ costs parameters

Pw» Pa Py are obtained from Fielbaum et al. (2021). The rest of the parameters are ours.
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